Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs

被引:8
|
作者
Shin, Seungjoo [1 ]
Kim, Min Woo [2 ]
Jin, Kyong Hwan [3 ]
Yi, Kwang Moo [4 ]
Kohmura, Yoshiki [5 ]
Ishikawa, Tetsuya [5 ]
Je, Jung Ho [5 ,6 ]
Park, Jaesik [1 ,7 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Grad Sch Artificial Intelligence, Pohang 37673, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Sch Interdisciplinary Biosci & Bioengn, Pohang 37673, South Korea
[3] Daegu Gyeongbuk Inst Sci & Technol DGIST, Dept Elect Engn & Comp Sci, Daegu 42988, South Korea
[4] Univ British Columbia UBC, Dept Comp Sci, Vancouver, BC V6T 1Z4, Canada
[5] RIKEN SPring 8 Ctr, 1-1-1 Kouto,Sayo Cho, Sayo, Hyogo 6795198, Japan
[6] Nanoblesse Res Lab, 4th Fl 85-11 Namwon Ro, Pohang 37883, South Korea
[7] Pohang Univ Sci & Technol POSTECH, Dept Comp Sci & Engn, Pohang 37673, South Korea
基金
加拿大自然科学与工程研究理事会;
关键词
DISTENSION; SHRINKAGE; FIXATION;
D O I
10.1038/s41598-023-27627-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synchrotron X-rays can be used to obtain highly detailed images of parts of the lung. However, micro-motion artifacts induced by such as cardiac motion impede quantitative visualization of the alveoli in the lungs. This paper proposes a method that applies a neural network for synchrotron X-ray Computed Tomography (CT) data to reconstruct the high-quality 3D structure of alveoli in intact mouse lungs at expiration, without needing ground-truth data. Our approach reconstructs the spatial sequence of CT images by using a deep-image prior with interpolated input latent variables, and in this way significantly enhances the images of alveolar structure compared with the prior art. The approach successfully visualizes 3D alveolar units of intact mouse lungs at expiration and enables us to measure the diameter of the alveoli. We believe that our approach helps to accurately visualize other living organs hampered by micro-motion.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography
    Egan, C. K.
    Jacques, S. D. M.
    Wilson, M. D.
    Veale, M. C.
    Seller, P.
    Beale, A. M.
    Pattrick, R. A. D.
    Withers, P. J.
    Cernik, R. J.
    SCIENTIFIC REPORTS, 2015, 5
  • [22] X-RAY COMPUTED TOMOGRAPHY: A 3D METHOD FOR CHARACTERISING INHALATION POWDERS
    Gajjar, Parmesh
    Styliari, Ioanna Danai
    Burnett, Timothy L.
    Chen, Xizhong
    Elliott, James A.
    Ganley, William J.
    Hammond, Robert
    Nguyen, Hien
    Price, Robert
    Roberts, Kevin
    Withers, Philip J.
    Murnane, Darragh
    JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2020, 33 (02) : A21 - A21
  • [23] Characterization of rock microstructure using 3D X-ray computed tomography
    Xue, Huaqing
    Xu, Ruina
    Jiang, Peixue
    Zhou, Shangwen
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2015, 47 (06): : 1073 - 1078
  • [24] Bayesian 3D X-ray Computed Tomography image reconstruction with a Scaled Gaussian Mixture prior model
    Wang, Li
    Gac, Nicolas
    Mohammad-Djafari, Ali
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING (MAXENT 2014), 2015, 1641 : 556 - 563
  • [26] Comparison of 3D X-ray tomography with computed tomography in patients with distal extremity fractures
    Falkowski, Anna L.
    Kovacs, Balazs K.
    Schwartz, Fides R.
    Benz, Robyn M.
    Stieltjes, Bram
    Hirschmann, Anna
    SKELETAL RADIOLOGY, 2020, 49 (12) : 1965 - 1975
  • [27] Comparison of 3D X-ray tomography with computed tomography in patients with distal extremity fractures
    Anna L. Falkowski
    Balazs K. Kovacs
    Fides R. Schwartz
    Robyn M. Benz
    Bram Stieltjes
    Anna Hirschmann
    Skeletal Radiology, 2020, 49 : 1965 - 1975
  • [28] Joint iterative reconstruction and 3D rigid alignment for X-ray tomography
    Pande, K.
    Donatelli, J. J.
    Parkinson, D. Y.
    Yan, H.
    Sethian, J. A.
    OPTICS EXPRESS, 2022, 30 (06) : 8898 - 8916
  • [29] Deep learning-based X-ray computed tomography image reconstruction and prediction of compression behavior of 3D printed lattice structures
    Yang, Heng
    Wang, Wenfeng
    Li, Chuanlei
    Qi, Junfeng
    Wang, Panding
    Lei, Hongshuai
    Fang, Daining
    ADDITIVE MANUFACTURING, 2022, 54
  • [30] A deep learning reconstruction framework for X-ray computed tomography with incomplete data
    Dong, Jianbing
    Fu, Jian
    He, Zhao
    PLOS ONE, 2019, 14 (11):