Frequency-domain stability conditions for split-path nonlinear systems

被引:0
|
作者
van den Eijnden, S. J. A. M. [1 ]
Sharif, B. [1 ]
Heertjes, M. F. [1 ]
Heemels, W. P. M. H. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 01期
基金
欧洲研究理事会;
关键词
LIMITATIONS; INTEGRATOR; GAIN;
D O I
10.1016/j.ifacol.2023.02.051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the class of control systems containing so-called split-path nonlinear (SPAN) filters, which are designed to overcome some of the well-known fundamental limitations in linear time-invariant (LTI) control. In this work, we are interested in developing tools for the stability analysis of such systems using frequency-domain techniques. Hereto, we explicitly show the equivalence between a set of linear matrix inequalities (LMIs) with S-procedure terms, guaranteeing stability of the closed-loop (SPAN) system, and a frequency-domain condition. We also provide a systematic procedure for verifying the frequency-domain condition in a graphical manner. The results are illustrated through a nummerical case study.
引用
收藏
页码:301 / 306
页数:6
相关论文
共 50 条
  • [41] Frequency-domain criteria for the global stability of phase synchronization systems
    G. A. Leonov
    K. D. Aleksandrov
    Doklady Mathematics, 2015, 92 : 769 - 772
  • [42] FREQUENCY-DOMAIN METHODS FOR PROVING THE UNIFORM STABILITY OF VIBRATING SYSTEMS
    REBARBER, R
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1993, 185 : 366 - 377
  • [43] Frequency-domain tools for stability analysis of reset control systems
    van Loon, S. J. L. M.
    Gruntjens, K. G. J.
    Heertjes, M. F.
    van de Wouw, N.
    Heemels, W. P. M. H.
    AUTOMATICA, 2017, 82 : 101 - 108
  • [44] Stability of linear systems with multiple delays based on frequency-domain
    Peng, Da-Zhou
    Xu, Bu-Gong
    Guo, Yun-Zhi
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2002, 30 (08):
  • [45] Frequency-domain criteria for the global stability of phase synchronization systems
    Leonov, G. A.
    Aleksandrov, K. D.
    DOKLADY MATHEMATICS, 2015, 92 (03) : 769 - 772
  • [46] Regularization and frequency-domain stability of well-posed systems
    Y. Latushkin
    T. Randolph
    R. Schnaubelt
    Mathematics of Control, Signals and Systems, 2005, 17 : 128 - 151
  • [47] Frequency-domain equalization incorporated with frequency-domain redundancy for OFDM systems
    Okazaki, Akihiro
    Motoyoshi, Katsuyuki
    Higashinaka, Masatsugu
    Nagayasu, Takayuki
    Kubo, Hiroshi
    Shibuya, Akihiro
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2006, E89A (10) : 2549 - 2557
  • [48] Frequency-domain conditions for the convergence of Volterra series describing nonlinear networks
    Czarniak, Andrzej
    Rozprawy Elektrotechniczne, 1987, 33 (02): : 325 - 337
  • [49] LOCAL STABILITY OF COMPOSITE SYSTEMS - FREQUENCY-DOMAIN CONDITION AND ESTIMATE OF THE DOMAIN OF ATTRACTION
    SAEKI, M
    ARAKI, M
    KONDO, B
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1980, 25 (05) : 936 - 940
  • [50] Frequency-domain conditions for disturbance rejection and decoupling with stability or pole placement
    Koussiouris, TG
    Tzierakis, KG
    AUTOMATICA, 1996, 32 (02) : 229 - 234