A Poisson-Nernst-Planck single ion channel model and its effective finite element solver

被引:4
|
作者
Xie, Dexuan [1 ]
Chao, Zhen [2 ]
机构
[1] Univ Wisconsin Milwaukee, Dept Math Sci, Milwaukee, WI 53201 USA
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Poisson -Nernst -Planck equations; Finite element method; Single ion channel; Potassium channel; Electric current calculation; MOLECULAR-DYNAMICS; K+ CHANNEL; SELECTIVITY FILTER; POTASSIUM CHANNEL; CONDUCTION; PERMEATION; MEMBRANE;
D O I
10.1016/j.jcp.2023.112043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A single ion channel is a membrane protein with an ion selectivity filter that allows only a single species of ions (such as potassium ions) to pass through in the "open" state. Its se-lectivity filter also naturally separates a solvent domain into an intracellular domain and an extracellular domain. Such biological and geometrical characteristics of a single ion chan-nel are novelly adopted in the construction of a new kind of dielectric continuum ion channel model, called the Poisson-Nernst-Planck single ion channel (PNPSIC) model, in this paper. An effective PNPSIC finite element solver is then developed and implemented as a software package workable for a single ion channel with a three-dimensional X-ray crys-tallographic molecular structure and a mixture of multiple ionic species. Numerical results for a potassium channel confirm the convergence and efficiency of the PNPSIC finite ele-ment solver and demonstrate the high performance of the software package. Moreover, the PNPSIC model is applied to the calculation of electric current and validated by biophysical experimental data. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel
    Chen, D
    Lear, J
    Eisenberg, B
    BIOPHYSICAL JOURNAL, 1997, 72 (01) : 97 - 116
  • [42] New mixed finite element methods for the coupled Stokes and Poisson-Nernst-Planck equations in Banach spaces
    Correa, Claudio I.
    Gatica, Gabriel N.
    Ruiz-Baier, Ricardo
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (03) : 1511 - 1551
  • [43] Modeling ion-specific effects in polyelectrolyte brushes: A modified Poisson-Nernst-Planck model
    Ceely, William J.
    Chugunova, Marina
    Nadim, Ali
    Sterling, James D.
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [44] A free energy satisfying finite difference method for Poisson-Nernst-Planck equations
    Liu, Hailiang
    Wang, Zhongming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 363 - 376
  • [45] FINITE DOMAIN EFFECTS IN STEADY STATE SOLUTIONS OF POISSON-NERNST-PLANCK EQUATIONS
    Elad, Doron
    Gavish, Nir
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2019, 79 (03) : 1030 - 1050
  • [46] A complete analysis of a classical Poisson-Nernst-Planck model for ionic flow
    Liu, Weishi
    Xu, Hongguo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (04) : 1192 - 1228
  • [47] Poisson-Nernst-Planck model for an ionic transistor based on a semiconductor membrane
    Nikolaev, Alexey
    Gracheva, Maria E.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2014, 13 (04) : 818 - 825
  • [48] Frequency-Dependent Dielectric Permittivity in Poisson-Nernst-Planck Model
    Rosseto, M. P.
    Evangelista, L. R.
    Lenzi, E. K.
    Zola, R. S.
    de Almeida, R. R. Ribeiro
    JOURNAL OF PHYSICAL CHEMISTRY B, 2022, 126 (34): : 6446 - 6453
  • [49] Mathematical studies of Poisson-Nernst-Planck model for membrane channels: Finite ion size effects without electroneutrality boundary conditions
    Aitbayev, Rakhim
    Bates, Peter W.
    Lu, Hong
    Zhang, Lijun
    Zhang, Mingji
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 510 - 527
  • [50] An improved Poisson-Nernst-Planck ion channel model and numerical studies on effects of boundary conditions, membrane charges, and bulk concentrations
    Chao, Zhen
    Xie, Dexuan
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2021, 42 (27) : 1929 - 1943