Tensor-CSPNet: A Novel Geometric Deep Learning Framework for Motor Imagery Classification

被引:34
|
作者
Ju, Ce [1 ]
Guan, Cuntai [1 ]
机构
[1] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
关键词
Electroencephalography; Manifolds; Tensors; Task analysis; Deep learning; Covariance matrices; Visualization; Electroencephalography (EEG)-based brain-computer interfaces (BCIs); geometric deep learning (DL); motor imagery (MI) classification; symmetric positive definite (SPD) manifolds; BRAIN-COMPUTER INTERFACES; COMMON SPATIAL-PATTERN; RIEMANNIAN GEOMETRY; EEG CLASSIFICATION; EEG/MEG; FILTERS;
D O I
10.1109/TNNLS.2022.3172108
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning (DL) has been widely investigated in a vast majority of applications in electroencephalography (EEG)-based brain-computer interfaces (BCIs), especially for motor imagery (MI) classification in the past five years. The mainstream DL methodology for the MI-EEG classification exploits the temporospatial patterns of EEG signals using convolutional neural networks (CNNs), which have been particularly successful in visual images. However, since the statistical characteristics of visual images depart radically from EEG signals, a natural question arises whether an alternative network architecture exists apart from CNNs. To address this question, we propose a novel geometric DL (GDL) framework called Tensor-CSPNet, which characterizes spatial covariance matrices derived from EEG signals on symmetric positive definite (SPD) manifolds and fully captures the temporospatiofrequency patterns using existing deep neural networks on SPD manifolds, integrating with experiences from many successful MI-EEG classifiers to optimize the framework. In the experiments, Tensor-CSPNet attains or slightly outperforms the current state-of-the-art performance on the cross-validation and holdout scenarios in two commonly used MI-EEG datasets. Moreover, the visualization and interpretability analyses also exhibit the validity of Tensor-CSPNet for the MI-EEG classification. To conclude, in this study, we provide a feasible answer to the question by generalizing the DL methodologies on SPD manifolds, which indicates the start of a specific GDL methodology for the MI-EEG classification.
引用
收藏
页码:10955 / 10969
页数:15
相关论文
共 50 条
  • [21] A novel motor imagery EEG recognition method based on deep learning
    Li, Ming-ai
    Zhang, Meng
    Sun, Yan-jun
    PROCEEDINGS OF THE 2016 INTERNATIONAL FORUM ON MANAGEMENT, EDUCATION AND INFORMATION TECHNOLOGY APPLICATION, 2016, 47 : 728 - 733
  • [22] A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines
    Lu, Na
    Li, Tengfei
    Ren, Xiaodong
    Miao, Hongyu
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2017, 25 (06) : 566 - 576
  • [23] A Novel Simplified Convolutional Neural Network Classification Algorithm of Motor Imagery EEG Signals Based on Deep Learning
    Li, Feng
    He, Fan
    Wang, Fei
    Zhang, Dengyong
    Xia, Yi
    Li, Xiaoyu
    APPLIED SCIENCES-BASEL, 2020, 10 (05):
  • [24] Efficient Classification of Motor Imagery Electroencephalography Signals Using Deep Learning Methods
    Majidov, Ikhtiyor
    Whangbo, Taegkeun
    SENSORS, 2019, 19 (07):
  • [25] A Novel Convolutional Neural Network Classification Approach of Motor-Imagery EEG Recording Based on Deep Learning
    Echtioui, Amira
    Mlaouah, Ayoub
    Zouch, Wassim
    Ghorbel, Mohamed
    Mhiri, Chokri
    Hamam, Habib
    APPLIED SCIENCES-BASEL, 2021, 11 (21):
  • [26] Motor Imagery Classification for Brain Computer Interface Using Deep Metric Learning
    Alwasiti, Haider
    Yusoff, Mohd Zuki
    Raza, Kamran
    IEEE ACCESS, 2020, 8 : 109949 - 109963
  • [27] Improving cross-subject classification performance of motor imagery signals: a data augmentation-focused deep learning framework
    Ozelbas, Enes
    Tulay, Emine Elif
    Ozekes, Serhat
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (01):
  • [28] Attention Induced Dual Convolutional-Capsule Network (AIDC-CN): A deep learning framework for motor imagery classification
    Chowdhury, Ritesh Sur
    Bose, Shirsha
    Ghosh, Sayantani
    Konar, Amit
    Computers in Biology and Medicine, 2024, 183
  • [29] Transforming Motor Imagery Analysis: A Novel EEG Classification Framework Using AtSiftNet Method
    Xu, Haiqin
    Haider, Waseem
    Aziz, Muhammad Zulkifal
    Sun, Youchao
    Yu, Xiaojun
    SENSORS, 2024, 24 (19)
  • [30] Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review
    Altaheri, Hamdi
    Muhammad, Ghulam
    Alsulaiman, Mansour
    Amin, Syed Umar
    Altuwaijri, Ghadir Ali
    Abdul, Wadood
    Bencherif, Mohamed A.
    Faisal, Mohammed
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20): : 14681 - 14722