Identification of plant microRNAs using convolutional neural network

被引:0
|
作者
Zhang, Yun [1 ]
Huang, Jianghua [1 ]
Xie, Feixiang [1 ]
Huang, Qian [1 ]
Jiao, Hongguan [1 ]
Cheng, Wenbo [1 ]
机构
[1] Guizhou Univ Tradit Chinese Med, Coll Informat Engn, Guiyang, Guizhou, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
deep learning; plant; microRNA; !text type='Java']Java[!/text; SRICATs; ANNOTATION; TOOL; CRITERIA;
D O I
10.3389/fpls.2024.1330854
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
MicroRNAs (miRNAs) are of significance in tuning and buffering gene expression. Despite abundant analysis tools that have been developed in the last two decades, plant miRNA identification from next-generation sequencing (NGS) data remains challenging. Here, we show that we can train a convolutional neural network to accurately identify plant miRNAs from NGS data. Based on our methods, we also present a user-friendly pure Java-based software package called Small RNA-related Intelligent and Convenient Analysis Tools (SRICATs). SRICATs encompasses all the necessary steps for plant miRNA analysis. Our results indicate that SRICATs outperforms currently popular software tools on the test data from five plant species. For non-commercial users, SRICATs is freely available at https://sourceforge.net/projects/sricats.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Automated identification of Myxobacterial genera using Convolutional Neural Network
    Hedieh Sajedi
    Fatemeh Mohammadipanah
    Ali Pashaei
    Scientific Reports, 9
  • [42] Automated identification of Myxobacterial genera using Convolutional Neural Network
    Sajedi, Hedieh
    Mohammadipanah, Fatemeh
    Pashaei, Ali
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [43] Identification of Indian butterflies using Deep Convolutional Neural Network
    Theivaprakasham, Hari
    JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, 2021, 24 (01) : 329 - 340
  • [44] Phasic dopamine release identification using convolutional neural network
    Matsushita, Gustavo H. G.
    Sugi, Adam H.
    Costa, Yandre M. G.
    Gomez-A, Alexander
    Da Cunha, Claudio
    Oliveira, Luiz S.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 114
  • [45] Road Sign Identification with Convolutional Neural Network Using TensorFlow
    Kherarba, Mohammed
    Abbes, Mounir Tahar
    Boumerdassi, Selma
    Meddah, Mohammed
    Benhamada, Abdelhak
    Senouci, Mohammed
    MACHINE LEARNING FOR NETWORKING, MLN 2020, 2021, 12629 : 255 - 264
  • [46] Identification of Defects in Casting Products by using a Convolutional Neural Network
    Ekambaram D.
    Ponnusamy V.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (03): : 149 - 155
  • [47] Identification of Chili Plant Diseases Based on Leaves Using Hyperparameter Optimization Architecture Convolutional Neural Network
    Murinto
    Winiarti, Sri
    Pujiyanta, Ardi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 859 - 865
  • [48] Banana Plant Disease Classification Using Hybrid Convolutional Neural Network
    Narayanan, K. Lakshmi
    Krishnan, R. Santhana
    Robinson, Y. Harold
    Julie, E. Golden
    Vimal, S.
    Saravanan, V.
    Kaliappan, M.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [49] PLANT SPECIES CLASSIFICATION USING HYPERSPECTRAL LIDAR WITH CONVOLUTIONAL NEURAL NETWORK
    Tian, Wenxin
    Tang, Lingli
    Chen, Yuwei
    Li, Ziyang
    Qiu, Shi
    Li, Xiaohui
    Zhu, Jiajia
    Jiang, Changhui
    Hu, Peilun
    Jia, Jianxin
    Wu, Haohao
    Chen, Linsheng
    Hyyppa, Juha
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1740 - 1743
  • [50] Paddy Plant Disease Classification and Prediction Using Convolutional Neural Network
    Sagarika, G. K.
    Prasad, Krishna S. J.
    Kumar, Mohana S.
    2020 5TH IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS ON ELECTRONICS, INFORMATION, COMMUNICATION & TECHNOLOGY (RTEICT-2020), 2020, : 208 - 214