On the Total Positivity and Accurate Computations of r-Bell Polynomial Bases

被引:0
|
作者
Mainar, Esmeralda [1 ]
Pena, Juan Manuel [1 ]
Rubio, Beatriz [1 ]
机构
[1] Univ Res Inst Math & Its Applicat IUMA, Univ Zaragoza, Dept Appl Math, Zaragoza 50009, Spain
关键词
high relative accuracy; bidiagonal decompositions; totally positive matrices; r-Stirling numbers; r-Bell polynomials;
D O I
10.3390/axioms12090839
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-Stirling matrices are totally positive and determine the linear transformation between monomial and r-Bell polynomial bases. An efficient algorithm for the computation to high relative accuracy of the bidiagonal factorization of r-Stirling matrices is provided and used to achieve computations to high relative accuracy for the resolution of relevant algebraic problems with collocation, Wronskian, and Gramian matrices of r-Bell bases. The numerical experimentation confirms the accuracy of the proposed procedure.
引用
收藏
页数:17
相关论文
共 46 条
  • [21] Correction to: Identities behind some congruences for r-Bell and derangement polynomials
    Grzegorz Serafin
    Research in Number Theory, 2020, 6
  • [22] Some identities related to degenerate r-Bell and degenerate Fubini polynomials
    Kim, Taekyun
    San Kim, Dae
    Kwon, Jongkyum
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2023, 31 (01):
  • [23] Degenerate r-Bell Polynomials Arising from Degenerate Normal Ordering
    Kim, Taekyun
    Kim, Dae San
    Kim, Hye Kyung
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [24] Accurate computations with collocation matrices of rational bases
    Delgado, J.
    Pena, J. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4354 - 4364
  • [25] Accurate computations with matrices related to bases {tieλt}
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2022, 48 (04)
  • [26] Accurate computations with collocation matrices of a general class of bases
    Mainar, E.
    Pena, J. M.
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [27] Accurate computations with matrices related to bases {tieλt}
    E. Mainar
    J. M. Peña
    B. Rubio
    Advances in Computational Mathematics, 2022, 48
  • [28] Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
    Mainar, E.
    Pena, J. M.
    Rubio, B.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [29] Accurate and efficient computations with Wronskian matrices of Bernstein and related bases
    Mainar, Esmeralda
    Pena, Juan M.
    Rubio, Beatriz
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2022, 29 (03)
  • [30] Accurate computations with Gram and Wronskian matrices of geometric and Poisson bases
    E. Mainar
    J. M. Peña
    B. Rubio
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116