Prospects of Gravitational-wave Follow-up through a Wide-field Ultraviolet Satellite: A Dorado Case Study

被引:6
|
作者
Dorsman, Bas [1 ,2 ]
Raaijmakers, Geert [1 ,2 ]
Cenko, S. Bradley [3 ]
Nissanke, Samaya [1 ,2 ,4 ]
Singer, Leo P. [3 ]
Kasliwal, Mansi M. [5 ]
Piro, Anthony L. [6 ]
Bellm, Eric C. [7 ]
Hartmann, Dieter H. [8 ]
Hotokezaka, Kenta [9 ]
Lukosiute, Kamile [1 ,2 ]
机构
[1] Univ Amsterdam, Anton Pannekoek Inst Astron, GRAPPA, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[2] Univ Amsterdam, Inst High Energy Phys, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[3] NASA Goddard Space Flight Ctr, Astroparticle Phys Lab, Mail Code 661, Greenbelt, MD 20771 USA
[4] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[5] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
[6] Observ Carnegie Inst Sci, 813 Santa Barbara St, Pasadena, CA 91101 USA
[7] Univ Washington, DIRAC Inst, Dept Astron, 3910 15th Ave NE, Seattle, WA 98195 USA
[8] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
[9] Univ Tokyo, Res Ctr Early Universe, Grad Sch Sci, Bunkyo ku, Tokyo 1130033, Japan
来源
ASTROPHYSICAL JOURNAL | 2023年 / 944卷 / 02期
基金
欧洲研究理事会;
关键词
NEUTRON-STAR MERGER; INFRARED LIGHT CURVES; ELECTROMAGNETIC COUNTERPART; OPTICAL COUNTERPART; GW170817; KILONOVA; 1ST HOURS; EJECTA; EMISSION; SPECTRA; SIMULATIONS;
D O I
10.3847/1538-4357/acaa9e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The detection of gravitational waves from the binary neuron star merger GW170817 and electromagnetic counterparts GRB170817A and AT2017gfo kick-started the field of gravitational-wave multimessenger astronomy. The optically red to near-infrared emission ("red" component) of AT2017gfo was readily explained as produced by the decay of newly created nuclei produced by rapid neutron capture (a kilonova). However, the ultraviolet to optically blue emission ("blue" component) that was dominant at early times (up to 1.5 days) received no consensus regarding its driving physics. Among many explanations, two leading contenders are kilonova radiation from a lanthanide-poor ejecta component and shock interaction (cocoon emission). In this work, we simulate AT2017gfo-like light curves and perform a Bayesian analysis to study whether an ultraviolet satellite capable of rapid gravitational-wave follow-up, could distinguish between physical processes driving the early "blue" component. We find that ultraviolet data starting at 1.2 hr distinguishes the two early radiation models up to 160 Mpc, implying that an ultraviolet mission like Dorado would significantly contribute to insights into the driving emission physics of the postmerger system. While the same ultraviolet data and optical data starting at 12 hr have limited ability to constrain model parameters separately, the combination of the two unlocks tight constraints for all but one parameter of the kilonova model up to 160 Mpc. We further find that a Dorado-like ultraviolet satellite can distinguish the early radiation models up to at least 130 (60) Mpc if data collection starts within 3.2 (5.2) hr for AT2017gfo-like light curves.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] An Empirical Study of Contamination in Deep, Rapid, and Wide-field Optical Follow-up of Gravitational Wave Events
    Cowperthwaite, P. S.
    Berger, E.
    Rest, A.
    Chornock, R.
    Scolnic, D. M.
    Williams, P. K. G.
    Fong, W.
    Drout, M. R.
    Foley, R. J.
    Margutti, R.
    Lunnan, R.
    Metzger, B. D.
    Quataert, E.
    ASTROPHYSICAL JOURNAL, 2018, 858 (01):
  • [2] Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view
    Ghosh, Shaon
    Bloemen, Steven
    Nelemans, Gijs
    Groot, Paul J.
    Price, Larry R.
    ASTRONOMY & ASTROPHYSICS, 2016, 592
  • [3] Deep Follow-up for Gravitational-wave Inference: A Case Study with GW151226
    Vajpeyi, Avi
    Smith, Rory
    Thrane, Eric
    ASTROPHYSICAL JOURNAL, 2023, 947 (01):
  • [4] Follow-up of Neutron Star Mergers with CTA and Prospects for Joint Detection with Gravitational-wave Detectors
    Mondal, T.
    Chakraborty, S.
    Resmi, L.
    Bose, D.
    ASTROPHYSICAL JOURNAL, 2025, 983 (01):
  • [5] The gravitational-wave follow-up program of the Cherenkov Telescope Array
    Seglar-Arroyo, Monica
    Bissaldi, Elisabetta
    Bulgarelli, Andrea
    Carosi, Alessandro
    Cella, Giancarlo
    Di Girolamo, Tristano
    Gasparetto, Thomas
    Ghirlanda, Giancarlo
    Humensky, Brian
    Inoue, Susumu
    Longo, Francesco
    Nava, Lara
    Patricelli, Barbara
    Razzano, Massimiliano
    Ribeiro, Deivid
    Schussler, Fabian
    Stamerra, Antonio
    Stratta, Giulia
    Vergani, Susanna
    36TH INTERNATIONAL COSMIC RAY CONFERENCE, ICRC2019, 2021,
  • [6] Fully coherent follow-up of continuous gravitational-wave candidates
    Shaltev, M.
    Prix, R.
    PHYSICAL REVIEW D, 2013, 87 (08):
  • [7] Wide-field angiography for diagnosis and follow-up of Eales disease: a case series
    Cruzado-Sanchez, Deivy
    Tellez, Walter A.
    Barriga-Salaverry, Guillermo
    Luglio-Valdivieso, Hugo
    Lujan-Najar, Silvio
    ARQUIVOS BRASILEIROS DE OFTALMOLOGIA, 2019, 82 (04) : 339 - 344
  • [8] LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW 150914
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    ASTROPHYSICAL JOURNAL LETTERS, 2016, 826 (01)
  • [9] SWIFT FOLLOW-UP OBSERVATIONS OF CANDIDATE GRAVITATIONAL-WAVE TRANSIENT EVENTS
    Evans, P. A.
    Fridriksson, J. K.
    Gehrels, N.
    Homan, J.
    Osborne, J. P.
    Siegel, M.
    Beardmore, A.
    Handbauer, P.
    Gelbord, J.
    Kennea, J. A.
    Smith, M.
    Zhu, Q.
    Aasi, J.
    Abadie, J.
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M.
    Accadia, T.
    Acernese, F.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Ceron, E. Amador
    Amariutei, D.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Ast, S.
    Aston, S. M.
    Astone, P.
    Atkinson, D.
    Aufmuth, P.
    Aulbert, C.
    Aylott, B. E.
    Babak, S.
    Baker, P.
    Ballardin, G.
    Ballmer, S.
    Bao, Y.
    Barayoga, J. C. B.
    Barker, D.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2012, 203 (02):
  • [10] Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory
    Arcavi, Iair
    McCully, Curtis
    Hosseinzadeh, Griffin
    Howell, D. Andrew
    Vasylyev, Sergiy
    Poznanski, Dovi
    Zaltzman, Michael
    Maoz, Dan
    Singer, Leo
    Valenti, Stefano
    Kasen, Daniel
    Barnes, Jennifer
    Piran, Tsvi
    Fong, Wen-fai
    ASTROPHYSICAL JOURNAL LETTERS, 2017, 848 (02)