Nonstandard quadratic forms over rational function fields

被引:0
|
作者
Sivatski, Alexander S. [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Matemat, Natal, Brazil
关键词
Quadratic form; Pfister form; Strong Hasse principle; Norm map; Brauer group;
D O I
10.1016/j.jpaa.2022.107310
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let L = F(t1, ..., tm) be a rational function field of characteristic different from 2. For a discrete F-valuation v on L denote by Lv the completion of L with respect to v. Assume cp is an anisotropic form over L, and let {psi 1, ... , psi n} be a finite collection of anisotropic forms over F. We say that cp is stable with respect to {psi 1, ..., psi n} if cpK(t1,...,tm) is anisotropic for any extension K/F such that all the forms psi iK are anisotropic. The form cp is called nonstandard for the extension L/F if it is stable with respect to some collection of forms {psi 1, . .. , psi n}, and in addition for any discrete F-valuation v on L the form cpLv is isotropic. Let X be a d-dimensional variety over an algebraically closed field k. We conjecture that if d > 1 and m > 1, then there is a nonstandard form cp with dim cp > 2m+d-1 + 1 for the extension k(X)(t1, ..., tm)/k(X). We prove this conjecture in the cases (d = 2, m = 1), (d = 3, m = 1), and (d = 1, m = 2). These cases are treated quite separately, by using different tools. In the last section we consider similar questions for systems of two quadratic forms.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Metaplectic Ramanujan Conjecture Over Function Fields with Applications to Quadratic Forms
    Altug, Salim Ali
    Tsimerman, Jacob
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (13) : 3465 - 3558
  • [22] Hyperbolicity and near hyperbolicity of quadratic forms over function fields of quadrics
    Scully, Stephen
    MATHEMATISCHE ANNALEN, 2018, 372 (3-4) : 1437 - 1458
  • [23] On ternary quadratic forms over the rational numbers
    Jafari, Amir
    Rostamkhani, Farhood
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2022, 72 (04) : 1105 - 1119
  • [24] On ternary quadratic forms over the rational numbers
    Amir Jafari
    Farhood Rostamkhani
    Czechoslovak Mathematical Journal, 2022, 72 : 1105 - 1119
  • [25] MOMENTS OF QUADRATIC DIRICHLET L-FUNCTIONS OVER RATIONAL FUNCTION FIELDS
    Bucur, Alina
    Diaconu, Adrian
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (03) : 485 - 517
  • [26] Isotropy of 8-dimensional quadratic forms over function fields of quadrics
    Izhboldin, OT
    Karpenko, NA
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (04) : 1823 - 1841
  • [27] ISOTROPY OF QUADRATIC FORMS OVER FUNCTION FIELDS OF p-ADIC CURVES
    Parimala, R.
    Suresh, V.
    PUBLICATIONS MATHEMATIQUES, 1998, (88): : 129 - 150
  • [28] Isotropy of six-dimensional quadratic forms over function fields of quadrics
    Izhboldin, OT
    Karpenko, NA
    JOURNAL OF ALGEBRA, 1998, 209 (01) : 65 - 93
  • [29] Isotropy of quadratic forms over function fields ofp-adic curves
    R. Parimala
    V. Suresh
    Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 1998, 88 (1): : 129 - 150
  • [30] ON THE RANK OF UNIVERSAL QUADRATIC FORMS OVER REAL QUADRATIC FIELDS
    Blomer, Valentin
    Kala, Vitezslav
    DOCUMENTA MATHEMATICA, 2018, 23 : 15 - 34