TFL-DT: A Trust Evaluation Scheme for Federated Learning in Digital Twin for Mobile Networks

被引:86
|
作者
Guo, Jingjing [1 ]
Liu, Zhiquan [2 ]
Tian, Siyi [1 ]
Huang, Feiran [2 ]
Li, Jiaxing [1 ]
Li, Xinghua [1 ]
Igorevich, Kostromitin Konstantin [3 ]
Ma, Jianfeng [4 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Peoples R China
[2] Jinan Univ, Coll Cyber Secur, Guangzhou 510632, Peoples R China
[3] South Ural State Univ, Dept Informat Secur, Chelyabinsk 454080, Russia
[4] Xidian Univ, State Key Lab Integrated Serv Network, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 俄罗斯科学基金会; 美国国家科学基金会;
关键词
Federated learning; digital twin; mobile networks; trust evaluation; MODEL;
D O I
10.1109/JSAC.2023.3310094
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Due to the distributed collaboration and privacy protection features, federated learning is a promising technology to perform the model training in virtual twins of Digital Twin for Mobile Networks (DTMN). In order to enhance the reliability of the model, it is always expected that the users involved in federated learning have trustworthy behaviors. Yet, available trust evaluation schemes for federated learning have the problems of considering simplex evaluation factor and using coarse-grained trust calculation method. In this paper, we propose a trust evaluation scheme for federated learning in DTMN, which takes direct trust evidence and recommended trust information into account. A user behavior model is designed based on multiple attributes to depict users' behavior in a fine-grained manner. Furthermore, the trust calculation methods for local trust value and recommended trust value of a user are proposed using the data of user behavior model as trust evidence. Several experiments were conducted to verify the effectiveness of the proposed scheme. The results show that the proposed method is able to evaluate the trust levels of users with different behavior patterns accurately. Moreover, it performs better in resisting attacks from users that alternately execute good and bad behaviors compared with state-of-the-art scheme. The code for the method proposed in this paper is available at: https://web.xidian.edu.cn/jjguo/en/code.html.
引用
收藏
页码:3548 / 3560
页数:13
相关论文
共 50 条
  • [21] A Federated Digital Twin Framework for UAVs-Based Mobile Scenarios
    Zhou, Longyu
    Leng, Supeng
    Wang, Qing
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (06) : 7377 - 7393
  • [22] FCLLM-DT: Enpowering Federated Continual Learning With Large Language Models for Digital-Twin-Based Industrial IoT
    Xia, Yingjie
    Chen, Yuhan
    Zhao, Yunxiao
    Kuang, Li
    Liu, Xuejiao
    Hu, Ji
    Liu, Zhiquan
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (06): : 6070 - 6081
  • [23] Adaptive Federated Learning and Digital Twin for Industrial Internet of Things
    Sun, Wen
    Lei, Shiyu
    Wang, Lu
    Liu, Zhiqiang
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (08) : 5605 - 5614
  • [24] Digital Twin and Federated Learning: Enhancing and Securing Critical Infrastructure
    De Carlo, Niccolo
    Romano, Ciro
    Granero, Gianluca
    D'Amico, Fabrizio
    Cappelli, Enrico
    Fabbri, Gianluca
    GEOMEDIA, 2024, 28 (03) : 6 - 11
  • [25] Blockchain and Federated Learning Empowered Digital Twin for Effective Healthcare
    Joo, Yunsang
    Camacho, David
    Boi, Biagio
    Esposito, Christian
    Choi, Chang
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14
  • [26] Secrecy-Driven Energy Minimization in Federated-Learning-Assisted Marine Digital Twin Networks
    Qian, Li Ping
    Li, Mingqing
    Ye, Ping
    Wang, Qian
    Lin, Bin
    Wu, Yuan
    Yang, Xiaoniu
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (03) : 5155 - 5168
  • [27] Cooperative Federated Learning and Model Update Verification in Blockchain-Empowered Digital Twin Edge Networks
    Jiang, Li
    Zheng, Hao
    Tian, Hui
    Xie, Shengli
    Zhang, Yan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11154 - 11167
  • [28] Cloud-Edge-Client Collaborative Learning in Digital Twin Empowered Mobile Networks
    Zhao, Lindong
    Ni, Shouxiang
    Wu, Dan
    Zhou, Liang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (10) : 3491 - 3503
  • [29] Cloud-Edge-Client Collaborative Learning in Digital Twin Empowered Mobile Networks
    Zhao, Lindong
    Ni, Shouxiang
    Wu, Dan
    Zhou, Liang
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2023, 41 (11) : 3491 - 3503
  • [30] A Novel Federated Learning Scheme for Generative Adversarial Networks
    Zhang, Jiaxin
    Zhao, Liang
    Yu, Keping
    Min, Geyong
    Al-Dubai, Ahmed Y.
    Zomaya, Albert Y.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (05) : 3633 - 3649