Deep Reinforcement Learning-Based Optimal Parameter Design of Power Converters

被引:2
|
作者
Bui, Van-Hai [1 ,4 ]
Chang, Fangyuan [1 ]
Su, Wencong [1 ]
Wang, Mengqi [1 ]
Murphey, Yi Lu [1 ]
Da Silva, Felipe Leno [2 ]
Huang, Can [2 ]
Xue, Lingxiao [3 ]
Glatt, Ruben [2 ]
机构
[1] Univ Michigan Dearborn, Dept Elect & Comp Engn, Coll Engn & Comp Sci, Dearborn, MI 48128 USA
[2] Lawrence Livermore Natl Lab LLNL, Livermore, CA 94550 USA
[3] Oak Ridge Natl Lab ORNL, Oak Ridge, TN 37830 USA
[4] State Univ New York SUNY Maritime Coll, Dept Elect Engn, Throggs Neck, NY 10465 USA
关键词
deep reinforcement learning; deep neural networks; optimal parameters design; optimization; power converters; OPTIMIZATION; FREQUENCY; PFC;
D O I
10.1109/ICNC57223.2023.10074355
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The optimal design of power converters often requires a long time to process with a huge number of simulations to determine the optimal parameters. To reduce the design cycle, this paper proposes a proximal policy optimization (PPO)-based model to optimize the design parameters for Buck and Boost converters. In each training step, the learning agent carries out an action that adjusts the value of the design parameters and interacts with a dynamic Simulink model. The simulation provides feedback on power efficiency and helps the learning agent in optimizing parameter design. Unlike deep Q-learning and standard actor-critic algorithms, PPO includes a clipped objective function and the function avoids the new policy from changing too far from the old policy. This allows the proposed model to accelerate and stabilize the learning process. Finally, to show the effectiveness of the proposed method, the performance of different optimization algorithms is compared on two popular power converter topologies.
引用
收藏
页码:25 / 29
页数:5
相关论文
共 50 条
  • [21] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [22] Deep Reinforcement Learning-Based Power Management for Chiplet-Based Multicore Systems
    Li, Xiao
    Chen, Lin
    Chen, Shixi
    Jiang, Fan
    Li, Chengeng
    Zhang, Wei
    Xu, Jiang
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024, 32 (09) : 1726 - 1739
  • [23] Distributed Deep Reinforcement Learning-Based Spectrum and Power Allocation for Heterogeneous Networks
    Yang, Helin
    Zhao, Jun
    Lam, Kwok-Yan
    Xiong, Zehui
    Wu, Qingqing
    Xiao, Liang
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2022, 21 (09) : 6935 - 6948
  • [24] Deep Reinforcement Learning-based Spectrum Allocation and Power Management for IAB Networks
    Cheng, Qingqing
    Wei, Zhiqiang
    Yuan, Jinhong
    2021 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2021,
  • [25] Reinforcement Learning-based Optimal On-board Decoupling Capacitor Design Method
    Park, Hyunwook
    Park, Junyong
    Kim, Subin
    Lho, Daehwan
    Park, Shinyoung
    Park, Gapyeol
    Cho, Kyungjun
    Kim, Joungho
    2018 IEEE 27TH CONFERENCE ON ELECTRICAL PERFORMANCE OF ELECTRONIC PACKAGING AND SYSTEMS (EPEPS), 2018, : 213 - 215
  • [26] Stability-Oriented Multiobjective Control Design for Power Converters Assisted by Deep Reinforcement Learning
    Jiang, Shan
    Zeng, Yu
    Zhu, Ye
    Pou, Josep
    Konstantinou, Georgios
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2023, 38 (10) : 12394 - 12400
  • [27] Reward Mechanism Design for Deep Reinforcement Learning-Based Microgrid Energy Management
    Hu, Mingjie
    Han, Baohui
    Lv, Shilin
    Bao, Zhejing
    Lu, Lingxia
    Yu, Miao
    2023 6TH INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY AND POWER ENGINEERING, REPE 2023, 2023, : 201 - 205
  • [28] Deep Reinforcement Learning-Based Optimal Building Energy Management Strategies with Photovoltaic Systems
    Sim, Minjeong
    Hong, Geonkyo
    Suh, Dongjun
    PROCEEDINGS OF BUILDING SIMULATION 2021: 17TH CONFERENCE OF IBPSA, 2022, 17 : 2125 - 2132
  • [29] Towards autonomous and optimal excavation of shield machine: a deep reinforcement learning-based approach
    Zhang, Ya-kun
    Gong, Guo-fang
    Yang, Hua-yong
    Chen, Yu-xi
    Chen, Geng-lin
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2022, 23 (06): : 458 - 478
  • [30] Deep reinforcement learning-based optimal deployment of IoT machine learning jobs in fog computing architecture
    Bushehrian, Omid
    Moazeni, Amir
    COMPUTING, 2025, 107 (01)