Topic modeling for multi-omic integration in the human gut microbiome and implications for Autism

被引:2
|
作者
Tataru, Christine [1 ]
Peras, Marie [3 ]
Rutherford, Erica [3 ]
Dunlap, Kaiti [4 ]
Yin, Xiaochen [3 ]
Chrisman, Brianna S. [4 ]
DeSantis, Todd Z. [3 ]
Wall, Dennis P. [5 ,6 ]
Iwai, Shoko [3 ]
David, Maude M. [1 ,2 ]
机构
[1] Oregon State Univ, Dept Microbiol, SW Campus Way, Corvallis, OR 97331 USA
[2] Oregon State Univ, Sch Pharm, SW Campus Way, Corvallis, OR 97331 USA
[3] Second Genome Inc, 1000 Marina Blvd,Suite 500, Brisbane, CA 94005 USA
[4] Serra Mall, Dept Bioengn, Stanford, CA USA
[5] Serra Mall, Dept Biomed Data Sci, Stanford, CA USA
[6] Dept Pediat Syst Med, 1265 Welch Rd, Stanford, CA USA
关键词
DIAGNOSTIC OBSERVATION SCHEDULE; GAMMA-AMINOBUTYRIC-ACID; ESCHERICHIA-COLI; STEROID SULFATASE; SPECTRUM; CAFFEINE; METABOLITE; PROTEINS; HETEROGENEITY; ASSOCIATION;
D O I
10.1038/s41598-023-38228-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While healthy gut microbiomes are critical to human health, pertinent microbial processes remain largely undefined, partially due to differential bias among profiling techniques. By simultaneously integrating multiple profiling methods, multi-omic analysis can define generalizable microbial processes, and is especially useful in understanding complex conditions such as Autism. Challenges with integrating heterogeneous data produced by multiple profiling methods can be overcome using Latent Dirichlet Allocation (LDA), a promising natural language processing technique that identifies topics in heterogeneous documents. In this study, we apply LDA to multi-omic microbial data (16S rRNA amplicon, shotgun metagenomic, shotgun metatranscriptomic, and untargeted metabolomic profiling) from the stool of 81 children with and without Autism. We identify topics, or microbial processes, that summarize complex phenomena occurring within gut microbial communities. We then subset stool samples by topic distribution, and identify metabolites, specifically neurotransmitter precursors and fatty acid derivatives, that differ significantly between children with and without Autism. We identify clusters of topics, deemed "cross-omic topics", which we hypothesize are representative of generalizable microbial processes observable regardless of profiling method. Interpreting topics, we find each represents a particular diet, and we heuristically label each cross-omic topic as: healthy/general function, age-associated function, transcriptional regulation, and opportunistic pathogenesis.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Multi-omic Analysis of the Gut Microbiome in Rats with Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy
    Oliveira, Maria Eduarda T.
    Paulino, Gustavo V. B.
    dos Santos Junior, Erivaldo D.
    da Silva Oliveira, Francisca A.
    Melo, Vania M. M.
    Ursulino, Jeferson S.
    de Aquino, Thiago M.
    Shetty, Ashok K.
    Landell, Melissa Fontes
    Goes Gitai, Daniel Leite
    MOLECULAR NEUROBIOLOGY, 2022, 59 (10) : 6429 - 6446
  • [32] Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration
    Sambhawa Priya
    Michael B. Burns
    Tonya Ward
    Ruben A. T. Mars
    Beth Adamowicz
    Eric F. Lock
    Purna C. Kashyap
    Dan Knights
    Ran Blekhman
    Nature Microbiology, 2022, 7 : 780 - 795
  • [33] Multi-omic interactions in the gut of children at the onset of islet autoimmunity
    Patrick G. Gavin
    Ki Wook Kim
    Maria E. Craig
    Michelle M. Hill
    Emma E. Hamilton-Williams
    Microbiome, 10
  • [34] Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study
    Hintikka, Jukka E.
    Ahtiainen, Juha P.
    Permi, Perttu
    Jalkanen, Sirpa
    Lehtonen, Marko
    Pekkala, Satu
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [35] Multi-omic interactions in the gut of children at the onset of islet autoimmunity
    Gavin, Patrick G. G.
    Kim, Ki Wook
    Craig, Maria E. E.
    Hill, Michelle M. M.
    Hamilton-Williams, Emma E.
    MICROBIOME, 2022, 10 (01)
  • [36] Aerobic exercise training and gut microbiome-associated metabolic shifts in women with overweight: a multi-omic study
    Jukka E. Hintikka
    Juha P. Ahtiainen
    Perttu Permi
    Sirpa Jalkanen
    Marko Lehtonen
    Satu Pekkala
    Scientific Reports, 13
  • [37] Multi-omic profiling reveals associations between the gut microbiome, host genome and transcriptome in patients with colorectal cancer
    Zou, Shaomin
    Yang, Chao
    Zhang, Jieping
    Zhong, Dan
    Meng, Manqi
    Zhang, Lu
    Chen, Honglei
    Fang, Lekun
    JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)
  • [38] Multi-omic profiling reveals associations between the gut microbiome, host genome and transcriptome in patients with colorectal cancer
    Shaomin Zou
    Chao Yang
    Jieping Zhang
    Dan Zhong
    Manqi Meng
    Lu Zhang
    Honglei Chen
    Lekun Fang
    Journal of Translational Medicine, 22
  • [39] Multi-omic Microbiome Profiles in the Female Reproductive Tract in Early Pregnancy
    Jean, Sophonie
    Huang, Bernice
    Parikh, Hardik, I
    Edwards, David J.
    Brooks, J. Paul
    Kumar, Naren Gajenthra
    Sheth, Nihar U.
    Koparde, Vishal
    Smirnova, Ekaterina
    Huzurbazar, Snehalata
    Girerd, Philippe H.
    Wijesinghe, Dayanjan S.
    Strauss, Jerome F.
    Serrano, Myrna G.
    Fettweis, Jennifer M.
    Jefferson, Kimberly K.
    Buck, Gregory A.
    INFECTIOUS MICROBES & DISEASES, 2019, 1 (02): : 49 - 60
  • [40] Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration
    Priya, Sambhawa
    Burns, Michael B.
    Ward, Tonya
    Mars, Ruben A. T.
    Adamowicz, Beth
    Lock, Eric F.
    Kashyap, Purna C.
    Knights, Dan
    Blekhman, Ran
    NATURE MICROBIOLOGY, 2022, 7 (06) : 780 - +