Modal parameter identification in civil structures via Hilbert transform ensemble with improved empirical wavelet transform

被引:12
|
作者
Qin, Shiqiang [1 ]
Tang, Jian [1 ]
Feng, Jiacheng [1 ]
Zhou, Yunlai [2 ]
Yang, Fei [3 ]
Wahab, Magd Abdel [4 ]
机构
[1] Wuhan Univ Technol, Sch Civil Engn & Architecture, Hubei, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Aerosp Engn, State Key Lab Strength & Vibrat Mech Struct, Xian 710049, Peoples R China
[3] China Acad Railway Sci Corp Ltd, Infrastruct Inspect Res Inst, Beijing, Peoples R China
[4] Univ Ghent, Fac Engn & Architecture, Ghent, Belgium
关键词
Operational modal analysis; empirical wavelet transform; spectrum segmentation; synchroextracting transform; Hilbert transform;
D O I
10.1177/10775463231166428
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
To overcome the inaccurate frequency band division in empirical wavelet transform (EWT) induced by high noise and modulation edge band, this study proposes an improved EWT (IEWT) and applies it to operational modal analysis (OMA) in civil structures. The IEWT segments the frequency band using spectral trend determined with removing the high-frequency components of the Fourier spectrum. The synchroextracting transform is employed to denoise the frequency components obtained from IEWT combined with the random decrement technique and Hilbert transform to identify modal parameters. The effectiveness of IEWT and the proposed modal analysis method is comprehensively verified by a full-scale cable-stayed footbridge. The results demonstrate that the proposed IEWT, random decrement technique, and Hilbert transform can accurately identify the modal parameters from multi-setup ambient vibration measurements.
引用
收藏
页码:1621 / 1634
页数:14
相关论文
共 50 条
  • [31] Structural modal parameter identification and damage diagnosis based on Hilbert-Huang transform
    Jianping Han
    Peijuan Zheng
    Hongtao Wang
    Earthquake Engineering and Engineering Vibration, 2014, 13 : 101 - 111
  • [32] Identification for modal parameters based on improved random decrement technique and wavelet transform
    Liu, Jianfeng
    Li, Yuanbing
    Zhang, Qiwei
    Tongji Daxue Xuebao/Journal of Tongji University, 2015, 43 (10): : 1447 - 1453
  • [33] System identification of linear structures using Hilbert transform and empirical mode decomposition
    Yang, JN
    Lei, Y
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 213 - 219
  • [34] System identification of linear structures using Hilbert transform and empirical mode decomposition
    Yang, Jann N.
    Lei, Ying
    Proceedings of the International Modal Analysis Conference - IMAC, 2000, 1 : 213 - 219
  • [35] Parameter Identification using Discrete Wavelet Transform
    Ohkami, T.
    Koyama, S.
    PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [36] An improved HilbertHuang transform method for modal parameter identification of a high arch dam
    Wei, Bowen
    Xie, Bin
    Li, Huokun
    Zhong, Zimeng
    You, Yun
    Applied Mathematical Modelling, 2021, 91 : 297 - 310
  • [37] Segmentation of Heart Sound Signals Using Improved Hilbert Transform and Wavelet Packet Transform
    Xiao, Peizhi
    Wang, Kunpeng
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2025,
  • [38] An improved ensemble empirical mode decomposition and Hilbert transform for fatigue evaluation of dynamic EMG signal
    Wu, Q.
    Wei, C. F.
    Cai, Z. X.
    Ding, L.
    Law, R.
    OPTIK, 2015, 126 (24): : 5903 - 5908
  • [39] An improved parameterless empirical wavelet transform for incipient fault identification of wheelset bearing
    He, Yong
    Zhang, Tao
    Wang, Hong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (12):
  • [40] Analytical mode decomposition with Hilbert transform for modal parameter identification of buildings under ambient vibration
    Wang, Zuocai
    Chen, Genda
    ENGINEERING STRUCTURES, 2014, 59 : 173 - 184