Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms

被引:4
|
作者
Liu, Yongjian [1 ]
Nguyen, Van Thien [2 ]
Winkert, Patrick [3 ]
Zeng, Shengda [4 ,5 ,6 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
[2] FPT Univ, Dept Math, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[4] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, ul Lojasiewicza 6, PL-30348 Krakow, Poland
[6] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 02期
基金
欧盟地平线“2020”;
关键词
Coupled systems; Double phase operator; Existence and compactness results; Multivalued convection term; Nonlocal terms; Obstacle effect; ELLIPTIC-SYSTEMS; EXISTENCE;
D O I
10.1007/s00605-023-01825-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a new kind of coupled elliptic obstacle problems driven by double phase operators and with multivalued right-hand sides depending on the gradients of the solutions. Based on an abstract existence theorem for generalized mixed variational inequalities involving multivalued mappings due to Kenmochi (Hiroshima Math J 4:229-263, 1974), we prove the nonemptiness and compactness of the weak solution set of the coupled elliptic obstacle system.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条