Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms

被引:4
|
作者
Liu, Yongjian [1 ]
Nguyen, Van Thien [2 ]
Winkert, Patrick [3 ]
Zeng, Shengda [4 ,5 ,6 ]
机构
[1] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
[2] FPT Univ, Dept Math, Hoa Lac High Tech Pk,Km29 Thang Long Highway, Hanoi, Vietnam
[3] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[4] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, ul Lojasiewicza 6, PL-30348 Krakow, Poland
[6] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimizat, Yulin 537000, Guangxi, Peoples R China
来源
MONATSHEFTE FUR MATHEMATIK | 2023年 / 202卷 / 02期
基金
欧盟地平线“2020”;
关键词
Coupled systems; Double phase operator; Existence and compactness results; Multivalued convection term; Nonlocal terms; Obstacle effect; ELLIPTIC-SYSTEMS; EXISTENCE;
D O I
10.1007/s00605-023-01825-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a new kind of coupled elliptic obstacle problems driven by double phase operators and with multivalued right-hand sides depending on the gradients of the solutions. Based on an abstract existence theorem for generalized mixed variational inequalities involving multivalued mappings due to Kenmochi (Hiroshima Math J 4:229-263, 1974), we prove the nonemptiness and compactness of the weak solution set of the coupled elliptic obstacle system.
引用
收藏
页码:363 / 376
页数:14
相关论文
共 50 条
  • [1] Coupled double phase obstacle systems involving nonlocal functions and multivalued convection terms
    Yongjian Liu
    Van Thien Nguyen
    Patrick Winkert
    Shengda Zeng
    Monatshefte für Mathematik, 2023, 202 : 363 - 376
  • [2] NONLOCAL DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH MULTIVALUED BOUNDARY CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 877 - 912
  • [3] An inverse problem for a double phase implicit obstacle problem with multivalued terms
    Zeng, Shengda
    Bai, Yunru
    Radulescu, Vicentiu D.
    Winkert, Patrick
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29
  • [4] Existence of solutions for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Gasinski, Leszek
    Winkert, Patrick
    Bai, Yunru
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [5] Double phase implicit obstacle problems with convection term and multivalued operator
    Zeng, Shengda
    Bai, Yunru
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ANALYSIS AND APPLICATIONS, 2023, 21 (04) : 1013 - 1038
  • [6] Convergence analysis for double phase obstacle problems with multivalued convection term
    Zeng, Shengda
    Bai, Yunru
    Gasinski, Leszek
    Winkert, Patrick
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 659 - 672
  • [7] DOUBLE PHASE OBSTACLE PROBLEMS WITH MULTIVALUED CONVECTION AND MIXED BOUNDARY VALUE CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 999 - 1023
  • [8] Existence results for double phase implicit obstacle problems involving multivalued operators
    Zeng, Shengda
    Bai, Yunru
    Gasinski, Leszek
    Winkert, Patrick
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (05)
  • [9] Existence results for double phase implicit obstacle problems involving multivalued operators
    Shengda Zeng
    Yunru Bai
    Leszek Gasiński
    Patrick Winkert
    Calculus of Variations and Partial Differential Equations, 2020, 59
  • [10] DOUBLE PHASE IMPLICIT OBSTACLE PROBLEMS WITH CONVECTION AND MULTIVALUED MIXED BOUNDARY VALUE CONDITIONS
    Zeng, Shengda
    Radulescu, Vicentiu D.
    Winkert, Patrick
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1898 - 1926