A Stirling generator with multiple bypass expansion for variable-temperature waste heat recovery

被引:18
|
作者
Jiang, Zhijie [1 ,2 ]
Xu, Jingyuan [3 ]
Yu, Guoyao [1 ,4 ]
Yang, Rui
Wu, Zhanghua
Hu, Jianying
Zhang, Limin [1 ]
Luo, Ercang [1 ,2 ]
机构
[1] Chinese Acad Sci, Tech Inst Phys & Chem, CAS Key Lab Cryogen, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Karlsruhe Inst Technol, Mech & Elect Engn Div, D-76344 Karlsruhe, Germany
[4] Inst Opt Phys & Engn Technol, Jinan 251000, Peoples R China
基金
中国国家自然科学基金;
关键词
Stirling generator; Free -piston Stirling engine; Multiple bypasses; Waste heat recovery; Cascade heat utilization; PERFORMANCE; ENGINE; OPTIMIZATION; TECHNOLOGIES;
D O I
10.1016/j.apenergy.2022.120242
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Recovery heat from exhaust gas is a promising field in the context of global deepening of energy conservation and emission reduction. Small scale and cascade temperature variation make the exhaust gas waste heat recovery difficult. In order to make full use of the exhaust gas waste heat, a novel Stirling generator with a multiple-bypass configuration is proposed to fulfill the demand for recovery over a wide and continue temperature range. The exhaust gas is simplified into variable-temperature heat resource (VTHS, heat release accompanied by a decrease in temperature) and the cascade heat exchangers in the proposed system are assumed to converse heat with VTHS absorption continuously. In this paper, the ideal power efficiency of an infinite-stage generator is calculated. Then, a model of a 3-stage Stirling generator is established in software Sage. Theoretical analyses, exergy analyses and parameters analyses are carried out. The performance comparison between single-stage, 2-stage and 3-stage is presented at last. The result represents a significant increase by 29.3% in electric power when compared to the traditional single-stage system. These findings suggest a novel promising energy conversion technology for cascade utilization of exhaust gas waste heat.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Thermoelectric Generator Design and Characterization for Industrial Pipe Waste Heat Recovery
    Xiao, Di
    Sun, Peng
    Wu, Jianlin
    Zhang, Yin
    Wu, Jiehua
    Liu, Guoqiang
    Hu, Haoyang
    Hu, Jun
    Tan, Xiaojian
    He, Shi
    Jiang, Jun
    PROCESSES, 2023, 11 (06)
  • [42] Waste heat recovery from improved cookstove through thermoelectric generator
    Panwar, N. L.
    Kumar, Himanshu
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2019, 43 (01) : 466 - 470
  • [43] Novel designs of thermoelectric generator for automotive waste heat recovery: A review
    Tien, Tan Nguyen
    Vu, Quang Khong
    Duy, Vinh Nguyen
    AIMS ENERGY, 2022, 10 (04) : 922 - 942
  • [44] Performance optimization of a segmented converging thermoelectric generator for waste heat recovery
    Chen, Jie
    Wang, Ruochen
    Luo, Ding
    Zhou, Weiqi
    APPLIED THERMAL ENGINEERING, 2022, 202
  • [45] Development of a 125 kW AMB Expander/Generator for Waste Heat Recovery
    Hawkins, Lawrence A.
    Zhu, Lei
    Blumber, Eric J.
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2011, 133 (07):
  • [46] A dynamic model for thermoelectric generator applied to vehicle waste heat recovery
    Lan, Song
    Yang, Zhijia
    Chen, Rui
    Stobart, Richard
    APPLIED ENERGY, 2018, 210 : 327 - 338
  • [47] Performance assessment of a thermoelectric generator applied to exhaust waste heat recovery
    Demir, Murat Emre
    Dincer, Ibrahim
    APPLIED THERMAL ENGINEERING, 2017, 120 : 694 - 707
  • [48] Life Cycle Analysis of Thermoelectric Generator Efficiency for Waste Heat Recovery
    Chan, Zijie
    Lim, Joon Hoong
    13TH INTERNATIONAL ENGINEERING RESEARCH CONFERENCE (13TH EURECA 2019), 2020, 2233
  • [49] Numerical analysis on the segmented annular thermoelectric generator for waste heat recovery
    Fan, Shifa
    Gao, Yuanwen
    ENERGY, 2019, 183 : 35 - 47
  • [50] Thermoelectric Generator Using Low-Cost Thermoelectric Modules for Low-Temperature Waste Heat Recovery
    Castaneda, Manuela
    Amell, Andres A.
    Correa, Mauricio A.
    Aguilar, Claudio E.
    Colorado, Henry A.
    SUSTAINABILITY, 2023, 15 (04)