LITTLEWOOD-PALEY CHARACTERIZATION OF DISCRETE MORREY SPACES AND ITS APPLICATION TO THE DISCRETE MARTINGALE TRANSFORM

被引:0
|
作者
Abe, Y. [1 ]
Sawano, Y. [1 ]
机构
[1] Chuo Univ, Grad Sch Sci & Engn, 1-13-27 Kasuga,Bunkyo Ku, Tokyo 1128551, Japan
来源
MATEMATICHE | 2023年 / 78卷 / 02期
关键词
Littlewood-Paley theory; discrete Morrey spaces; Martingale transform;
D O I
10.4418/2023.78.2.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is to develop the Littlewood-Paley theory of discrete Morrey spaces. As an application, we establish the boundedness of martingale transforms. We carefully justify the definition of martingale transforms, since discrete Morrey spaces do not contain discrete Lebesgue spaces as dense subspaces. We also obtain the boundedness of Riesz potentials.
引用
收藏
页码:335 / 356
页数:22
相关论文
共 50 条
  • [21] Commutators of Littlewood-Paley Operators on the Generalized Morrey Space
    Chen, Yanping
    Ding, Yong
    Wang, Xinxia
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [22] BOUNDEDNESS OF DISCRETE HILBERT TRANSFORM ON DISCRETE MORREY SPACES
    Aliev, R. A.
    Ahmadova, A. N.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (01): : 98 - 109
  • [23] LITTLEWOOD-PALEY THEORY ON GAUSSIAN SPACES
    POTTHOFF, J
    NAGOYA MATHEMATICAL JOURNAL, 1988, 109 : 47 - 61
  • [24] Littlewood-Paley characterizations of Triebel-Lizorkin-Morrey spaces via ball averages
    Zhang, Junwei
    Zhuo, Ciqiang
    Yang, Dachun
    He, Ziyi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 150 : 76 - 103
  • [25] Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
    Lijuan Wang
    Shuangping Tao
    Journal of Inequalities and Applications, 2014
  • [26] LITTLEWOOD-PALEY THEOREM IN THE Ba SPACES
    马继钢
    ChineseScienceBulletin, 1989, (18) : 1507 - 1513
  • [27] BOUNDEDNESS OF INTRINSIC LITTLEWOOD-PALEY FUNCTIONS ON MUSIELAK-ORLICZ MORREY AND CAMPANATO SPACES
    Liang, Yiyu
    Nakai, Eiichi
    Yang, Dachun
    Zhang, Junqiang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2014, 8 (01): : 221 - 268
  • [28] Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent
    Wang, Lijuan
    Tao, Shuangping
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [29] LITTLEWOOD-PALEY CHARACTERIZATION OF WEIGHTED HARDY SPACES ASSOCIATED WITH OPERATORS
    Hu, Guorong
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (02) : 250 - 267
  • [30] The Hardy–Littlewood Maximal Operator on Discrete Morrey Spaces
    Hendra Gunawan
    Christopher Schwanke
    Mediterranean Journal of Mathematics, 2019, 16