High-Performance Near-Infrared Chlorinated Rylenecarboximide Fluorophores via Consecutive C-N and C-C Bond Formation

被引:0
|
作者
Wu, Ze-Hua [1 ,6 ]
Skabeev, Artem [1 ]
Zagranyarski, Yulian [3 ]
Duan, Ruomeng [2 ]
Jin, Jun-O [4 ]
Kwak, Minseok [5 ]
Basche, Thomas [6 ]
Muellen, Klaus [1 ,6 ]
Li, Chen [1 ,2 ]
机构
[1] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[2] Dongguan Univ Technol, Sch Mat Sci & Engn, 1 Daxue Rd,Songshan Lake, Dongguan 523820, Guangdong, Peoples R China
[3] Univ Sofia, Fac Chem & Pharm, St Kliment Ohridski 1 James Bourchier Blvd, Sofia 1164, Bulgaria
[4] Univ Ulsan, Coll Med, ASAN Med Ctr, Dept Microbiol, Seoul 05505, South Korea
[5] Pukyong Natl Univ, Dept Chem, Busan 48513, South Korea
[6] Johannes Gutenberg Univ Mainz, Dept Chem, D-55099 Mainz, Germany
关键词
Biomarkers; Consecutive C-N/C-C Coupling Reactions; Fluorescence Quantum Yields; Near-Infrared; Rylenecarboximide; CHARGE SEPARATION; ACCEPTOR; DERIVATIVES; EMISSION; POLYMER;
D O I
10.1002/anie.202315156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new class of near-infrared (NIR) fluorophores, PAI, is obtained by consecutive C-N/C-C bond formation between diphenylamines and 9,10-dibromoperylenecarboximide. Owing to the rigid structure, extended pi-conjugation and pronounced push-pull substitution, these fluorophores show emission maxima up to 804nm and large Stokes shifts. The extraordinarily high fluorescence quantum yields from 47% to 70% are attributed to chloro substitution in the bay positions of the perylene core. These characteristics, together with high photostability, qualify them as useful NIR emitters for applications as biomarkers and security inks.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Dehydrogenative Aromatic Ring Fusion for Carbazole Synthesis via C-C/C-N Bond Formation and Alkyl Migration
    Maiti, Saikat
    Mal, Prasenjit
    ORGANIC LETTERS, 2017, 19 (09) : 2454 - 2457
  • [22] Recent advances in nickel-catalyzed C-C and C-N bond formation via HA and ADC reactions
    Subaramanian, Murugan
    Sivakumar, Ganesan
    Balaraman, Ekambaram
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (19) : 4213 - 4227
  • [23] Transition-metal-free and base promoted C-C bond formation via C-N bond cleavage of organoammonium salts
    Zhang, Tao
    Wang, Kunyu
    Ke, Yuting
    Tang, Yuanyuan
    Liu, Long
    Huang, Tianzeng
    Li, Chunya
    Tang, Zhi
    Chen, Tieqiao
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2021, 19 (38) : 8237 - 8240
  • [24] Recent advances in Co-catalyzed C-C and C-N bond formation via ADC and ATH reactions
    Zhang, Meng-Juan
    Ge, Xiao-Lan
    Young, David J.
    Li, Hong-Xi
    TETRAHEDRON, 2021, 93
  • [25] Two coordination polymers created via in situ ligand synthesis involving C-N and C-C bond formation
    Feller, Russell K.
    Forster, Paul M.
    Wudl, Fred
    Cheetham, Anthony K.
    INORGANIC CHEMISTRY, 2007, 46 (21) : 8717 - 8721
  • [26] Cascade C-C and C-N Bond Formation: A Straightforward Synthesis of Phenanthridines and Fused Quinolines
    Borah, Ashwini
    Gogoi, Pranjal
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2016, 2016 (12) : 2200 - 2206
  • [27] Templated C-C and C-N Bond Formation Facilitated by a Molybdenum(VI) Metal Center
    Zwettler, Niklas
    Dupe, Antoine
    Schachner, Joerg A.
    Belaj, Ferdinand
    Moesch-Zanetti, Nadia C.
    INORGANIC CHEMISTRY, 2015, 54 (24) : 11969 - 11976
  • [28] Decarboxylative C-C and C-N Bond Formation by Ligand-Accelerated Iron Photocatalysis
    Feng, Guangshou
    Wang, Xiaofei
    Jin, Jian
    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, 2019, 2019 (39) : 6728 - 6732
  • [29] π-Bond Dissociation Energies: C-C, C-N, and C-O
    Kass, Steven R.
    JOURNAL OF ORGANIC CHEMISTRY, 2024, 89 (20): : 15158 - 15163
  • [30] C-C, C-O and C-N bond formation via rhodium(III)-catalyzed oxidative C-H activation
    Song, Guoyong
    Wang, Fen
    Li, Xingwei
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (09) : 3651 - 3678