Deep learning in MRI-guided radiation therapy: A systematic review

被引:3
|
作者
Eidex, Zach [1 ,2 ,3 ]
Ding, Yifu [1 ,2 ]
Wang, Jing [1 ,2 ]
Abouei, Elham [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Liu, Tian [4 ]
Wang, Tonghe [5 ]
Yang, Xiaofeng [1 ,2 ,3 ,6 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA USA
[3] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA USA
[4] Icahn Sch Med Mt Sinai, Dept Radiat Oncol, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USA
[6] Emory Univ Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
来源
基金
美国国家卫生研究院;
关键词
deep learning; MRI-guided; radiation therapy; radiotherapy; review; COMPUTED-TOMOGRAPHY; AUTO-SEGMENTATION; NEURAL-NETWORK; CT GENERATION; HEAD; IMAGES; PROSTATE; CANCER; TUMOR;
D O I
10.1002/acm2.14155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI
    Arabi, Hossein
    Zeng, Guodong
    Zheng, Guoyan
    Zaidi, Habib
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (13) : 2746 - 2759
  • [42] MRI Multi-Needle Reconstruction Using Deep Learning for MRI-Guided Prostate Cancer Brachytherapy
    Dai, X.
    Lei, Y.
    Zhang, Y.
    Qiu, L.
    Wang, T.
    Curran, W.
    Patel, P.
    Liu, T.
    Yang, X.
    MEDICAL PHYSICS, 2020, 47 (06) : E366 - E367
  • [43] Novel adversarial semantic structure deep learning for MRI-guided attenuation correction in brain PET/MRI
    Hossein Arabi
    Guodong Zeng
    Guoyan Zheng
    Habib Zaidi
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 2746 - 2759
  • [44] MRI-guided stereotactic ablative radiation therapy of spinal bone metastases: a preliminary experience
    Llorente, Ricardo
    Spieler, Benjamin O.
    Victoria, James
    Takita, Cristiane
    Yechieli, Raphael
    Ford, John C.
    Brown, Karen
    Samuels, Michael A.
    Mellon, Eric A.
    BRITISH JOURNAL OF RADIOLOGY, 2020, 93 (1105):
  • [45] Development and implementation of an automatic air delineation technique for MRI-guided adaptive radiation therapy
    Ahunbay, Ergun
    Parchur, Abdul K.
    Paulson, Eric
    Chen, Xinfeng
    Omari, Eenas
    Li, X. Allen
    PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (14):
  • [46] Dosimetric Effects of Magnetic Field in MRI-Guided Radiation Therapy Delivery for Breast Cancer
    Chen, G.
    Currey, A.
    Li, X.
    MEDICAL PHYSICS, 2015, 42 (06) : 3229 - 3229
  • [47] Assessment of Intrafraction Motion of the Vaginal Apex During Postoperative MRI-Guided Radiation Therapy
    Kamrava, M.
    Agazaryan, N.
    Cao, M.
    Low, D.
    Thomas, D. H.
    Yang, Y.
    Lamb, J. M.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2016, 96 (02): : E302 - E302
  • [48] Safety and Efficacy of Stereotactic MRI-Guided Adaptive Radiation Therapy for Localized Kidney Cancer
    Yim, K.
    Cagney, D. N.
    Mak, R. H.
    Singer, L.
    Williams, C. L.
    Martin, N. E.
    Choueiri, T. K.
    Chang, S. L.
    Leeman, J. E.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E207 - E207
  • [49] 3D Remote Dosimetry for MRI-Guided Radiation Therapy: A Hybrid Approach
    Rankine, L.
    Mein, S.
    Adamovics, J.
    Cai, B.
    Curcuru, A.
    Juang, T.
    Miles, D.
    Mutic, S.
    Wang, Y.
    Oldham, M.
    Li, H.
    MEDICAL PHYSICS, 2016, 43 (06) : 3873 - 3873
  • [50] Automated detection of radiopaque fiducial markers for image registration in MRI-guided radiation therapy
    Mercea, P.
    Giske, K.
    Grossmann, G.
    Sterzing, F.
    Bendl, R.
    RADIOTHERAPY AND ONCOLOGY, 2014, 111 : S235 - S236