Deep learning in MRI-guided radiation therapy: A systematic review

被引:3
|
作者
Eidex, Zach [1 ,2 ,3 ]
Ding, Yifu [1 ,2 ]
Wang, Jing [1 ,2 ]
Abouei, Elham [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Liu, Tian [4 ]
Wang, Tonghe [5 ]
Yang, Xiaofeng [1 ,2 ,3 ,6 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA USA
[3] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA USA
[4] Icahn Sch Med Mt Sinai, Dept Radiat Oncol, New York, NY USA
[5] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USA
[6] Emory Univ Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
来源
基金
美国国家卫生研究院;
关键词
deep learning; MRI-guided; radiation therapy; radiotherapy; review; COMPUTED-TOMOGRAPHY; AUTO-SEGMENTATION; NEURAL-NETWORK; CT GENERATION; HEAD; IMAGES; PROSTATE; CANCER; TUMOR;
D O I
10.1002/acm2.14155
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Recent advances in MRI-guided radiation therapy (MRgRT) and deep learning techniques encourage fully adaptive radiation therapy (ART), real-time MRI monitoring, and the MRI-only treatment planning workflow. Given the rapid growth and emergence of new state-of-the-art methods in these fields, we systematically review 197 studies written on or before December 31, 2022, and categorize the studies into the areas of image segmentation, image synthesis, radiomics, and real time MRI. Building from the underlying deep learning methods, we discuss their clinical importance and current challenges in facilitating small tumor segmentation, accurate x-ray attenuation information from MRI, tumor characterization and prognosis, and tumor motion tracking. In particular, we highlight the recent trends in deep learning such as the emergence of multi-modal, visual transformer, and diffusion models.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Nanoparticles for MRI-guided radiation therapy: a review
    Leon Smith
    Hilary L. Byrne
    David Waddington
    Zdenka Kuncic
    Cancer Nanotechnology, 2022, 13
  • [2] Nanoparticles for MRI-guided radiation therapy: a review
    Smith, Leon
    Kuncic, Zdenka
    Byrne, Hilary L.
    Waddington, David
    CANCER NANOTECHNOLOGY, 2022, 13 (01)
  • [3] MRI-Guided Radiation Therapy
    Jaffray, D.
    Mutic, S.
    Fallone, B.
    Raaymakers, B.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [4] Correction: Nanoparticles for MRI-guided radiation therapy: a review
    Leon Smith
    Hilary L. Byrne
    David Waddington
    Zdenka Kuncic
    Cancer Nanotechnology, 2022, 13
  • [5] Advances in MRI-Guided Radiation Therapy
    Chuong, Michael D.
    Palm, Russell F.
    Tjong, Michael C.
    Hyer, Daniel E.
    Kishan, Amar U.
    SURGICAL ONCOLOGY CLINICS OF NORTH AMERICA, 2023, 32 (03) : 599 - 615
  • [6] MRI-Guided Adaptive Radiation Therapy
    Benitez, Cecil M.
    Chuong, Michael D.
    Kuenzel, Luise A.
    Thorwarth, Daniela
    SEMINARS IN RADIATION ONCOLOGY, 2024, 34 (01) : 84 - 91
  • [7] MRI-Guided Radiation Therapy Systems
    Low, Daniel A.
    Fallone, B. Gino
    Raaymakers, Bas W.
    SEMINARS IN RADIATION ONCOLOGY, 2024, 34 (01) : 14 - 22
  • [8] Deep Learning-Based Super-Resolution 4D-MRI During MRI-Guided Radiation Therapy
    Zhang, H.
    Gach, H. M.
    Olberg, S.
    Green, O.
    Li, H.
    Yang, D.
    Hugo, G.
    Kim, J.
    Mutic, S.
    Park, J.
    MEDICAL PHYSICS, 2018, 45 (06) : E633 - E633
  • [9] Nanoparticles for MRI-guided radiation therapy: a review (vol 13, 38, 2022)
    Smith, Leon
    Byrne, Hilary L. L.
    Waddington, David
    Kuncic, Zdenka
    CANCER NANOTECHNOLOGY, 2022, 13 (01)
  • [10] MRI-Guided Therapy
    Yu. V. Bogachev
    A. V. Nikitina
    V. V. Frolov
    V. I. Chizhik
    Technical Physics, 2020, 65 : 1427 - 1435