Turning Privacy-preserving Mechanisms against Federated Learning

被引:5
|
作者
Arazzi, Marco [1 ]
Conti, Mauro [2 ,3 ]
Nocera, Antonino [1 ]
Picek, Stjepan [3 ,4 ]
机构
[1] Univ Pavia, Pavia, Italy
[2] Univ Padua, Padua, Italy
[3] Delft Univ Technol, Delft, Netherlands
[4] Radboud Univ Nijmegen, Nijmegen, Netherlands
关键词
Federated Learning; Graph Neural Network; Model Poisoning; Privacy; Recommender Systems;
D O I
10.1145/3576915.3623114
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, researchers have successfully employed Graph Neural Networks (GNNs) to build enhanced recommender systems due to their capability to learn patterns from the interaction between involved entities. In addition, previous studies have investigated federated learning as the main solution to enable a native privacy-preserving mechanism for the construction of global GNN models without collecting sensitive data into a single computation unit. Still, privacy issues may arise as the analysis of local model updates produced by the federated clients can return information related to sensitive local data. For this reason, researchers proposed solutions that combine federated learning with Differential Privacy strategies and community-driven approaches, which involve combining data from neighbor clients to make the individual local updates less dependent on local sensitive data. In this paper, we identify a crucial security flaw in such a configuration and design an attack capable of deceiving state-of-the-art defenses for federated learning. The proposed attack includes two operating modes, the first one focusing on convergence inhibition (Adversarial Mode), and the second one aiming at building a deceptive rating injection on the global federated model (Backdoor Mode). The experimental results show the effectiveness of our attack in both its modes, returning on average 60% performance detriment in all the tests on Adversarial Mode and fully effective backdoors in 93% of cases for the tests performed on Backdoor Mode.
引用
收藏
页码:1482 / 1495
页数:14
相关论文
共 50 条
  • [1] A survey on privacy-preserving federated learning against poisoning attacks
    Xia, Feng
    Cheng, Wenhao
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (10): : 13565 - 13582
  • [2] Efficient and Privacy-Preserving Federated Learning Against Poisoning Adversaries
    Zhao, Jiaqi
    Zhu, Hui
    Wang, Fengwei
    Zheng, Yandong
    Lu, Rongxing
    Li, Hui
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (05) : 2320 - 2333
  • [3] Privacy-Preserving Personalized Federated Learning
    Hu, Rui
    Guo, Yuanxiong
    Li, Hongning
    Pei, Qingqi
    Gong, Yanmin
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [4] Frameworks for Privacy-Preserving Federated Learning
    Phong, Le Trieu
    Phuong, Tran Thi
    Wang, Lihua
    Ozawa, Seiichi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (01) : 2 - 12
  • [5] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [6] Privacy-preserving Techniques in Federated Learning
    Liu Y.-X.
    Chen H.
    Liu Y.-H.
    Li C.-P.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 1057 - 1092
  • [7] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [8] Federated learning for privacy-preserving AI
    Cheng, Yong
    Liu, Yang
    Chen, Tianjian
    Yang, Qiang
    COMMUNICATIONS OF THE ACM, 2020, 63 (12) : 33 - 36
  • [9] Privacy-Preserving and Reliable Federated Learning
    Lu, Yi
    Zhang, Lei
    Wang, Lulu
    Gao, Yuanyuan
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 346 - 361
  • [10] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934