Improved Performance of Hole-Transporting Material-Free Perovskite Solar Cells Using a Low-Temperature Printed Carbon Paste

被引:3
|
作者
Tountas, Marinos [1 ]
Polyzoidis, Christos [1 ]
Loizos, Michalis [1 ]
Rogdakis, Konstantinos [1 ,2 ]
Kymakis, Emmanuel [1 ,2 ]
机构
[1] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
[2] HMU, Univ Res & Innovat Ctr, Inst Emerging Technol I EMERGE, Iraklion 71410, Greece
关键词
perovskite solar cells; carbon electrodes; carbon-based perovskite solar cells (C-PSCs); solution processing; large-area; scalability; SPIRO-OMETAD; DEGRADATION;
D O I
10.1021/acsaelm.3c01132
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The combination of chemically and structurally unstable hole transport materials (HTMs) and the metal ion diffusion from counter electrodes (CEs) toward the perovskite layer are reported as primary causes of the insufficient stability of perovskite solar cells (PSCs) and modules. Carbon-based CEs (C-CEs) directly deposited atop the perovskite layer without interposing any HTM represent a promising path to improving PSC stability while lowering the environmental impact and the manufacturing cost. In this work, we present a cost-effective approach to fabricating C-CEs using two different carbon pastes with distinct formulations, successfully replacing expensive metal-based electrodes. We engineered HTM-free PSCs based on a mesoscopic n-i-p structure and printable C-CEs (C-PSCs), with a 2D perovskite passivation layer as an electron-blocking layer between the perovskite and the C-CE. The devices using a low-temperature processed carbon counter electrode (LTPC-CE) improved the performance of the devices compared to the cells produced with a medium-temperature processed carbon counter electrode (MTPC-CE). This behavior is associated with enhanced charge carrier lifetime, charge transfer, and charge extraction processes enabled by effective solvent removal during the C-CE deposition as well as the highly electrically conductive pathways offered by graphene flakes. In particular, in small-area devices, the power conversion efficiencies (PCE) of champion devices using the LTPC-CE were increased from 14.99% for the MTPC-CE cell to 17.68%. In large-area devices, PCE improved from 12.24 to 15.01%. Transient photovoltage and photocurrent measurements confirmed the enhanced performance of the devices incorporating the LTP graphene-based carbon paste as the CE. Our findings highlight the high potential of low-temperature processed carbon electrodes for stable and efficient PSCs, offering a promising approach for the massive and affordable production of perovskite-based photovoltaics.
引用
收藏
页码:6228 / 6235
页数:8
相关论文
共 50 条
  • [21] Transparent Liquid Crystal Hole-Transporting Material for Stable Perovskite Solar Cells
    Ul Ain, Qurat
    Xia, Jianxing
    Kanda, Hiroyuki
    Alwani, Imanah Rafieh
    Gao, Xiao-Xin
    Rehman, Habib Ur
    Shao, Guang
    Jankauskas, Vygintas
    Rakstys, Kasparas
    Khan, Ammar Ahmed
    Nazeeruddin, Mohammad Khaja
    SOLAR RRL, 2023, 7 (02)
  • [22] Novel Cobalt Complexes as a Dopant for Hole-transporting Material in Perovskite Solar Cells
    Onozawa-Komatsuzaki, Nobuko
    Funaki, Takashi
    Murakami, Takurou N.
    Kazaoui, Said
    Chikamatsu, Masayuki
    Sayama, Kazuhiro
    ELECTROCHEMISTRY, 2017, 85 (05) : 226 - 230
  • [23] A Spirobixanthene-Based Dendrimeric Hole-Transporting Material for Perovskite Solar Cells
    Yu, Wei
    Zhang, Jinhui
    Tu, Dandan
    Yang, Qing
    Wang, Xuchao
    Liu, Xuan
    Cheng, Feng
    Qiao, Yu
    Li, Gang
    Guo, Xin
    Li, Can
    SOLAR RRL, 2020, 4 (01)
  • [24] Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells
    Wang, Yang
    Su, Tzu-Sen
    Tsai, Han-Yan
    Wei, Tzu-Chien
    Chi, Yun
    SCIENTIFIC REPORTS, 2017, 7
  • [25] Hole-transport material-free perovskite-based solar cells
    Etgar, Lioz
    MRS BULLETIN, 2015, 40 (08) : 674 - 680
  • [26] Microfluidic Processing of Ligand-Engineered NiO Nanoparticles for Low-Temperature Hole-Transporting Layers in Perovskite Solar Cells
    Michalska, Monika
    Surmiak, Maciej Adam
    Maasoumi, Fatemeh
    Senevirathna, Dimuthu C.
    Chantler, Paul
    Li, Hanchen
    Li, Bin
    Zhang, Tian
    Lin, Xionfeng
    Deng, Hao
    Chandrasekaran, Naresh
    Peiris, T. A. Nirmal
    Rietwyk, Kevin James
    Chesman, Anthony S. R.
    Alan, Tuncay
    Vak, Doojin
    Bach, Udo
    Jasieniak, Jacek J.
    SOLAR RRL, 2021, 5 (08):
  • [27] Efficient and Stable Inverted Planar Perovskite Solar Cells Using a Triphenylamine Hole-Transporting Material
    Chen, Rui
    Bu, Tongle
    Li, Jing
    Li, Wei
    Zhou, Peng
    Liu, Xueping
    Ku, Zhiliang
    Zhong, Jie
    Peng, Yong
    Huang, Fuzhi
    Cheng, Yi-Bing
    Fu, Zhengyi
    CHEMSUSCHEM, 2018, 11 (09) : 1467 - 1473
  • [28] A dopant-free polymer as hole-transporting material for highly efficient and stable perovskite solar cells
    Li, Xianqiang
    Tang, Xiaohong
    Yang, Yijie
    Ye, Tao
    Wu, Dan
    Wang, Hong
    Li, Jun
    Wang, Xizu
    PROGRESS IN PHOTOVOLTAICS, 2018, 26 (12): : 994 - 1002
  • [29] A new molecular material as a dopant-free hole-transporting layer for stable perovskite solar cells
    Zhang, Rui
    Shao, Jiang-Yang
    Yu, Bingcheng
    Li, Hongshi
    Zhong, Yu-Wu
    Shi, Jiangjian
    Luo, Yanhong
    Wu, Huijue
    Li, Dongmei
    Meng, Qingbo
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (11) : 4291 - 4299
  • [30] A Dopant-Free Zwitterionic Conjugated Polyelectrolyte as a Hole-Transporting and Interfacial Material for Perovskite Solar Cells
    Huan, Yihong
    Tan, Chao
    Wu, Bo
    Feng, Xingcui
    Xu, Wenting
    Gao, Deqing
    SOLAR RRL, 2020, 4 (10):