The price of anarchy for a berth allocation game

被引:1
|
作者
Pan, Jiayin [3 ]
Chen, Cong [1 ,2 ]
Xu, Yinfeng [3 ,4 ]
机构
[1] Guangzhou Univ, Sch Management, Guangzhou, Peoples R China
[2] South China Univ Technol, Sch Business Adm, Guangzhou, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Management, Xian, Peoples R China
[4] State Key Lab Mfg Syst Engn, Xian, Peoples R China
关键词
Berth allocation game; Price of anarchy; Multiprocessor task scheduling;
D O I
10.1007/s10951-023-00791-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we investigate a berth allocation game involving m identical berths and n vessels. Each vessel selfishly selects a consecutive set of berths for unloading, with the objective of minimizing its own cost represented by the maximum load among the chosen berths. The social cost is defined as the makespan, i.e., the maximum load over all berths. Our game generalizes classical machine scheduling games where jobs (vessels) may require multiple consecutive machines (berths). We analyze the price of anarchy (PoA) of the berth allocation game, which quantifies the impact of selfish behaviors of vessels. Specifically, we first consider a special case where each job can occupy at most two consecutive machines, and derive exact upper and lower bounds for the PoA based on the number of machines m. We show that the PoA asymptotically approaches 94\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{9}{4}$$\end{document}. For the general case where each job can occupy an arbitrary number of consecutive machines, we obtain a tight bound for the PoA, which is Theta logmloglogm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \left( \frac{\log m}{\log \log m}\right) $$\end{document}.
引用
收藏
页码:51 / 60
页数:10
相关论文
共 50 条
  • [21] Multiagent UAV Routing: A Game Theory Analysis With Tight Price of Anarchy Bounds
    Thakoor, Omkar
    Garg, Jugal
    Nagi, Rakesh
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (01) : 100 - 116
  • [22] Simultaneous Contests with Equal Sharing Allocation of Prizes: Computational Complexity and Price of Anarchy
    Elkind, Edith
    Ghosh, Abheek
    Goldberg, Paul W.
    ALGORITHMIC GAME THEORY, SAGT 2022, 2022, 13584 : 133 - 150
  • [23] The Price of Anarchy: Centralized versus Distributed Resource Allocation Trade-offs
    Guo, Jinhong K.
    Karlovitz, Alexander
    Jaillet, Patrick
    Hofmann, Martin O.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 1, 2019, : 146 - 153
  • [24] A Branch-and-Price Algorithm for the Integrated Berth Allocation and Quay Crane Assignment Problem
    Xie, Fanrui
    Wu, Tao
    Zhang, Canrong
    TRANSPORTATION SCIENCE, 2019, 53 (05) : 1427 - 1454
  • [26] Strong price of anarchy
    Andelman, Nir
    Feldman, Michal
    Mansour, Yishay
    GAMES AND ECONOMIC BEHAVIOR, 2009, 65 (02) : 289 - 317
  • [27] The price of stochastic anarchy
    Chung, Christine
    Ligett, Katrina
    Pruhs, Kirk
    Roth, Aaron
    ALGORITHMIC GAME THEORY, PROCEEDINGS, 2008, 4997 : 303 - +
  • [28] Strong Price of Anarchy
    Andelman, Nir
    Feldman, Michal
    Mansour, Yishay
    PROCEEDINGS OF THE EIGHTEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2007, : 189 - 198
  • [29] The Price of Anarchy in Auctions
    Roughgarden, Tim
    Syrgkanis, Vasilis
    Tardos, Eva
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2017, 59 : 59 - 101
  • [30] Liquid Price of Anarchy
    Azar, Yossi
    Feldman, Michal
    Gravin, Nick
    Roytman, Alan
    ALGORITHMIC GAME THEORY (SAGT 2017), 2017, 10504 : 3 - 15