Classification of Fish Species Using Multispectral Data from a Low-Cost Camera and Machine Learning

被引:4
|
作者
Monteiro, Filipe [1 ]
Bexiga, Vasco [1 ]
Chaves, Paulo [1 ]
Godinho, Joaquim [1 ]
Henriques, David [1 ]
Melo-Pinto, Pedro [2 ,3 ]
Nunes, Tiago [4 ]
Piedade, Fernando [1 ]
Pimenta, Nelson [1 ]
Sustelo, Luis [1 ]
Fernandes, Armando M. [1 ]
机构
[1] INOV Inst Engn Sistemas & Comp Inovacao, Rua Alves Redol,9, P-1000029 Lisbon, Portugal
[2] Univ Tras os Montes & Alto Douro, Inov4Agro Inst Innovat, CITAB Ctr Res & Technol Agroenvironm & Biol Sci, Capac Bldg & Sustainabil Agrifood Prod, P-5000801 Vila Real, Portugal
[3] Univ Tras os Montes & Alto Douro, Dept Engn Escola Ciencias & Tecnol, P-5000801 Vila Real, Portugal
[4] XSealence Sea Technol, Ave 25 Abril,45, P-2745384 Queluz, Portugal
关键词
classification; fish; machine learning; multispectral; spectroscopy; PORTUGAL; TOOL;
D O I
10.3390/rs15163952
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This work creates a fish species identification tool combining a low-cost, custom-made multispectral camera called MultiCam and a trained classification algorithm for application in the fishing industry. The objective is to assess, non-destructively and using reflectance spectroscopy, the possibility of classifying the spectra of small fish neighborhoods instead of the whole fish for situations where fish are not completely visible, and use the classification to estimate the percentage of each fish species captured. To the best of the authors' knowledge, this is the first work to study this possibility. The multispectral imaging device records images from 10 horse mackerel, 10 Atlantic mackerel, and 30 sardines, the three most abundant fish species in Portugal. This results in 48,741 spectra of 5 x 5 pixel regions for analysis. The recording occurs in twelve wavelength bands from 390 nm to 970 nm. The bands correspond to filters with the peculiarity of being highpass to keep the camera cost low. Using a Teflon tape white reference is also relevant to control the overall cost. The tested machine learning algorithms are k-nearest neighbors, multilayer perceptrons, and support vector machines. In general, the results are better than random guessing. The best classification comes from support vector machines, with a balanced accuracy of 63.8%. The use of Teflon does not seem to be detrimental to this result. It seems possible to obtain an equivalent accuracy with ten cameras instead of twelve.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] A Low-cost Fire Detection System using a Thermal Camera
    Nam, Yun-Cheol
    Nam, Yunyoung
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (03): : 1301 - 1314
  • [42] Estimating pavement roughness using a low-cost depth camera
    Aleadelat, Waleed
    Aledealat, Khaled
    Ksaibati, Khaled
    INTERNATIONAL JOURNAL OF PAVEMENT ENGINEERING, 2022, 23 (14) : 4923 - 4930
  • [43] Floor plan creation using a low-cost 360° camera
    Vynikal, Jakub
    Zahradnik, David
    PHOTOGRAMMETRIC RECORD, 2023, 38 (184): : 520 - 536
  • [44] LOW-COST LICENSE PLATE DETECTION USING A CALIBRATED CAMERA
    Weber, Henrique
    Jung, Claudio Rosito
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4763 - 4767
  • [45] Design and Development of a Low-Cost Multispectral Imager for Data Fusion with Hyperspectral Imagers
    Ahn, Byung Joon
    Joosten, Keaton
    Ault, Wesley
    Braun, Jacob
    Fingers, Ricky
    Ijaz, Muhammad
    O'Donnell, Zack
    Horack, John M.
    Newton, Elizabeth
    SENSORS, SYSTEMS, AND NEXTGENERATION SATELLITES XXIII, 2019, 11151
  • [46] 3D Fabric Feature Extraction and Defect Classification Using Low-Cost USB Camera
    Akbar, Fikri
    Akbar, Habibullah
    Suryana, Nanna
    Husni, Muhammad
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2011), 2011, 8285
  • [47] Low-Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles
    Handayani, Hepi Hapsari
    Cahyadi, Mokhamad Nur
    Raharjo, Agus Budi
    Haq, Failaqul
    ENVIRONMENT-BEHAVIOUR PROCEEDINGS JOURNAL, 2023, 8 : 271 - 277
  • [48] THE EVALUATION OF THE RGB AND MULTISPECTRAL CAMERA ON THE UNMANNED AERIAL VEHICLE (UAV) FOR THE MACHINE LEARNING CLASSIFICATION OF MAIZE
    Jurisic, M.
    Radocaj, D.
    Plascak, I.
    Subasic, D. Galic
    Petrovic, D.
    POLJOPRIVREDA, 2022, 28 (02): : 74 - 80
  • [49] Low-Cost Hydroxyapatite Powders from Tilapia Fish
    Da Cruz, J. A.
    Weinand, W. R.
    Neto, A. M.
    Palacios, R. S.
    Sales, A. J. M.
    Prezas, P. R.
    Costa, M. M.
    Graca, M. P. F.
    JOM, 2020, 72 (04) : 1435 - 1442
  • [50] Low-Cost Hydroxyapatite Powders from Tilapia Fish
    J. A. da Cruz
    W. R. Weinand
    A. M. Neto
    R. S. Palácios
    A. J. M. Sales
    P. R. Prezas
    M. M. Costa
    M. P. F. Graça
    JOM, 2020, 72 : 1435 - 1442