Data-driven state of health monitoring for maritime battery systems - a case study on sensor data from ships in operation

被引:3
|
作者
Liang, Qin [1 ,2 ,8 ,9 ]
Vanem, Erik [1 ]
Xue, Yongjian [3 ]
Alnes, Oystein [4 ]
Zhang, Heke [5 ]
Lam, James [6 ]
Bruvik, Katrine [7 ]
机构
[1] DNV Grp Res & Dev, Hovik, Norway
[2] Norwegian Univ Sci & Technol, Dept Ocean Operat & Civil Engn, Alesund, Norway
[3] DNV Grp Res & Dev, Shanghai, Peoples R China
[4] DNV Maritime, Hovik, Norway
[5] DNV Veracity, Shanghai, Peoples R China
[6] DNV Energy Syst, Hovik, Norway
[7] Corvus Energy, Nesttun, Norway
[8] DNV Grp Res & Dev, N-1363 Hovik, Norway
[9] Norwegian Univ Sci & Technol, Dept Ocean Operat & Civil Engn, N-6009 Alesund, Norway
关键词
Green shipping; battery; bigdata; machine learning; LITHIUM-ION BATTERIES; USEFUL LIFE PREDICTION; CYCLE LIFE; ONLINE STATE; MODEL; CALENDAR; CELLS;
D O I
10.1080/17445302.2023.2211241
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
IMO is implementing a stricter GHG strategy to reduce emissions from shipping. Battery powered ships, whether hybrid or fully electric, are a flexible solution with existing marine systems that can lower fuel consumption and emissions. However, relying on battery power for propulsion and maneuvering introduces new risks related to the available energy, which can be controlled by monitoring the SOH and SOC states. This paper conducts a detailed case study on applying Battery AI to operational data from real battery systems onboard ships, introducing state-of-the-art data-driven modelling and estimation of battery SOH, outlining the Battery AI, and providing corresponding recommendations to address issues detected during the test implementation. The performance of Battery AI is evaluated by comparing its results to annual SOH test results, with a maximum deviation underestimated by 3.21%. The paper concludes with a discussion of the results and recommendations for utilizing this method in risk assessment.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Data-Driven Statistical Analysis and Diagnosis of Networked Battery Systems
    Wang, Le Yi
    Chen, Wen
    Lin, Feng
    Yin, George
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2017, 8 (03) : 1177 - 1186
  • [32] An overview of data-driven battery health estimation technology for battery management system
    Chen, Minzhi
    Ma, Guijun
    Liu, Weibo
    Zeng, Nianyin
    Luo, Xin
    NEUROCOMPUTING, 2023, 532 : 152 - 169
  • [33] A Scalable Data-Driven Monitoring Approach for Distribution Systems
    Ferdowsi, Mohsen
    Benigni, Andrea
    Loewen, Artur
    Zargar, Behzad
    Monti, Antonello
    Ponci, Ferdinanda
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2015, 64 (05) : 1300 - 1313
  • [34] Measurement Selection for Data-Driven Monitoring of Distribution Systems
    Ferdowsi, Mohsen
    Benigni, Andrea
    Monti, Antonello
    Ponci, Ferdinanda
    IEEE SYSTEMS JOURNAL, 2019, 13 (04): : 4260 - 4268
  • [35] Data-Driven Soft Sensor Modeling for Algal Blooms Monitoring
    Wang, Zijian
    Zhao, Ze
    Li, Dong
    Cui, Li
    IEEE SENSORS JOURNAL, 2015, 15 (01) : 579 - 590
  • [36] IAQ Monitoring System Optimizing Data-Driven Sensor Placement
    Filios, Gabriel
    Nikoletseas, Sotiris
    Stivaros, Ioannis
    2024 20TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS, DCOSS-IOT 2024, 2024, : 408 - 415
  • [37] A Data-Driven Comparative Analysis of Lithium-Ion Battery State of Health and Capacity Estimation
    Sheikh, Shehzar Shahzad
    Shah, Fawad Ali
    Athar, Syed Owais
    Khalid, Hassan Abdullah
    ELECTRIC POWER COMPONENTS AND SYSTEMS, 2023, 51 (01) : 1 - 11
  • [38] Practical battery State of Health estimation using data-driven multi-model fusion
    Zhang, Yizhou
    Wik, Torsten
    Bergstrom, John
    Zou, Changfu
    IFAC PAPERSONLINE, 2023, 56 (02): : 3776 - 3781
  • [39] Identification of Typical Sub-Health State of Traction Battery Based on a Data-Driven Approach
    Wang, Cheng
    Yu, Chengyang
    Guo, Weiwei
    Wang, Zhenpo
    Tan, Jiyuan
    BATTERIES-BASEL, 2022, 8 (07):
  • [40] Prediction of Li-Ion battery State-Of-Health based on data-driven approach
    Lotano, Daniel
    Ciani, Lorenzo
    Giaquinto, Nicola
    Patrizi, Gabriele
    Scarpetta, Marco
    Spadavecchia, Maurizio
    2024 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC 2024, 2024,