Data-driven state of health monitoring for maritime battery systems - a case study on sensor data from ships in operation

被引:3
|
作者
Liang, Qin [1 ,2 ,8 ,9 ]
Vanem, Erik [1 ]
Xue, Yongjian [3 ]
Alnes, Oystein [4 ]
Zhang, Heke [5 ]
Lam, James [6 ]
Bruvik, Katrine [7 ]
机构
[1] DNV Grp Res & Dev, Hovik, Norway
[2] Norwegian Univ Sci & Technol, Dept Ocean Operat & Civil Engn, Alesund, Norway
[3] DNV Grp Res & Dev, Shanghai, Peoples R China
[4] DNV Maritime, Hovik, Norway
[5] DNV Veracity, Shanghai, Peoples R China
[6] DNV Energy Syst, Hovik, Norway
[7] Corvus Energy, Nesttun, Norway
[8] DNV Grp Res & Dev, N-1363 Hovik, Norway
[9] Norwegian Univ Sci & Technol, Dept Ocean Operat & Civil Engn, N-6009 Alesund, Norway
关键词
Green shipping; battery; bigdata; machine learning; LITHIUM-ION BATTERIES; USEFUL LIFE PREDICTION; CYCLE LIFE; ONLINE STATE; MODEL; CALENDAR; CELLS;
D O I
10.1080/17445302.2023.2211241
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
IMO is implementing a stricter GHG strategy to reduce emissions from shipping. Battery powered ships, whether hybrid or fully electric, are a flexible solution with existing marine systems that can lower fuel consumption and emissions. However, relying on battery power for propulsion and maneuvering introduces new risks related to the available energy, which can be controlled by monitoring the SOH and SOC states. This paper conducts a detailed case study on applying Battery AI to operational data from real battery systems onboard ships, introducing state-of-the-art data-driven modelling and estimation of battery SOH, outlining the Battery AI, and providing corresponding recommendations to address issues detected during the test implementation. The performance of Battery AI is evaluated by comparing its results to annual SOH test results, with a maximum deviation underestimated by 3.21%. The paper concludes with a discussion of the results and recommendations for utilizing this method in risk assessment.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Data-driven snapshot methods leveraging data fusion to estimate state of health for maritime battery systems
    Vanem, Erik
    Bruch, Maximilian
    Liang, Qin
    Thorbjornsen, Kristian
    Valoen, Lars Ole
    Alnes, Oystein Asheim
    ENERGY STORAGE, 2023, 5 (08)
  • [2] Data-driven state of health modelling—A review of state of the art and reflections on applications for maritime battery systems
    Vanem, Erik
    Salucci, Clara Bertinelli
    Bakdi, Azzeddine
    Alnes, Øystein Å sheim
    Vanem, Erik (Erik.Vanem@dnv.com), 1600, Elsevier Ltd (43):
  • [3] Data-driven state of health modelling-A review of state of the art and reflections on applications for maritime battery systems
    Vanem, Erik
    Salucci, Clara Bertinelli
    Bakdi, Azzeddine
    Alnes, Oystein Asheim
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [4] Thermal data-driven model reduction for enhanced battery health monitoring
    Khasin, Michael
    Mehta, Mohit R.
    Kulkarni, Chetan
    Lawson, John W.
    JOURNAL OF POWER SOURCES, 2024, 604
  • [5] Data-Driven Battery State of Health Estimation Based on Random Partial Charging Data
    Deng, Zhongwei
    Hu, Xiaosong
    Li, Penghua
    Lin, Xianke
    Bian, Xiaolei
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2022, 37 (05) : 5021 - 5031
  • [6] Data-driven design of a cascaded observer for battery state of health estimation
    Hametner, Christoph
    Jakubek, Stefan
    Prochazka, Wenzel
    2016 IEEE INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY TECHNOLOGIES (ICSET), 2016, : 180 - 185
  • [7] Data-Driven Design of a Cascaded Observer for Battery State of Health Estimation
    Hametner, Christoph
    Jakubek, Stefan
    Prochazka, Wenzel
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2018, 54 (06) : 6258 - 6266
  • [8] Data-driven estimation of battery state-of-health with formation features
    He, Weilin
    Li, Dingquan
    Sun, Zhongxian
    Wang, Chenyang
    Tang, Shihai
    Chen, Jing
    Geng, Xin
    Wang, Hailong
    Liu, Zhimeng
    Hu, Linyu
    Yang, Dongchen
    Tu, Haiyan
    Lin, Yuanjing
    He, Xin
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2024, 34 (07)
  • [9] Data-driven State of Health Modeling of Battery Energy Storage Systems Providing Grid Services
    Zhao, Chunyang
    Hashemi, Seyedmostafa
    Andersen, Peter Bach
    Traeholt, Chresten
    2021 11TH INTERNATIONAL CONFERENCE ON POWER, ENERGY AND ELECTRICAL ENGINEERING (CPEEE 2021), 2021, : 43 - 49
  • [10] Large-Scale Data-Driven Traffic Sensor Health Monitoring
    Tongge Huang
    Pranamesh Chakraborty
    Anuj Sharma
    Chinmay Hegde
    Journal of Big Data Analytics in Transportation, 2021, 3 (3): : 229 - 245