Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots

被引:4
|
作者
Lin, Ting [1 ,2 ]
Gu, Si-Si [1 ,2 ]
Xu, Yong-Qiang [1 ,2 ]
Jiang, Shun-Li [1 ,2 ]
Ye, Shu-Kun [1 ,2 ]
Wang, Bao-Chuan [1 ,2 ]
Li, Hai-Ou [1 ,2 ]
Guo, Guang-Can [1 ,2 ,3 ]
Zou, Chang-Ling [1 ,2 ,3 ]
Hu, Xuedong [4 ]
Cao, Gang [1 ,2 ,3 ]
Guo, Guo-Ping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Univ Sci & Technol China, Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
Semiconductor qubit; circuit quantum electrodynamics (QED); semiconductor quantum dot; scalable semiconductor-based circuit QED architectures; SINGLE-ELECTRON; QUBITS; SILICON;
D O I
10.1021/acs.nanolett.3c00036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.
引用
收藏
页码:4176 / 4182
页数:7
相关论文
共 50 条
  • [21] Multipole-based modal analysis of gate-defined quantum dots in graphene
    Raeis-Zadeh, S. Mohsen
    Safavi-Naeini, Safieddin
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (06):
  • [22] Characterization of a gate-defined double quantum dot in a Si/SiGe nanomembrane
    Knapp, T. J.
    Mohr, R. T.
    Li, Yize Stephanie
    Thorgrimsson, Brandur
    Foote, Ryan H.
    Wu, Xian
    Ward, Daniel R.
    Savage, D. E.
    Lagally, M. G.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    NANOTECHNOLOGY, 2016, 27 (15)
  • [23] Gate-defined graphene double quantum dot and excited state spectroscopy
    Liu, Xing Lan
    Hug, Dorothee
    Vandersypen, Lieven M. K.
    NANO LETTERS, 2010, 10 (05) : 1623 - 1627
  • [24] Autonomous Tuning and Charge-State Detection of Gate-Defined Quantum Dots
    Darulova, J.
    Pauka, S. J.
    Wiebe, N.
    Chan, K. W.
    Gardener, G. C.
    Manfra, M. J.
    Cassidy, M. C.
    Troyer, M.
    PHYSICAL REVIEW APPLIED, 2020, 13 (05)
  • [25] Decoherence of spin qubits due to a nearby charge fluctuator in gate-defined double dots
    Ramon, Guy
    Hu, Xuedong
    PHYSICAL REVIEW B, 2010, 81 (04)
  • [26] Erratum to: Multipole-based modal analysis of gate-defined quantum dots in graphene
    S. Mohsen Raeis-Zadeh
    Safieddin Safavi-Naeini
    The European Physical Journal B, 2013, 86
  • [27] A gate-defined silicon quantum dot molecule
    Liu, Hongwu
    Fujisawa, Toshimasa
    Inokawa, Hiroshi
    Ono, Yukinori
    Fujiwara, Akira
    Hirayama, Yoshiro
    APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [28] Scattering of two-dimensional Dirac fermions on gate-defined oscillating quantum dots
    Schulz, C.
    Heinisch, R. L.
    Fehske, H.
    PHYSICAL REVIEW B, 2015, 91 (04)
  • [29] Effective tuning methods for few-electron regime in gate-defined quantum dots
    Yang, Chanuk
    Jung, Hwanchul
    Choi, Hyung Kook
    Chung, Yunchul
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2025, 86 (02) : 106 - 112
  • [30] Fabrication and optical characterization of photonic crystal nanocavities with electrodes for gate-defined quantum dots
    Tajiri, T.
    Sakai, Y.
    Kuruma, K.
    Ji, S. M.
    Kiyama, H.
    Oiwa, A.
    Ritzmann, J.
    Ludwig, A.
    Wieck, A. D.
    Ota, Y.
    Arakawa, Y.
    Iwamoto, S.
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (SG)