Collective Microwave Response for Multiple Gate-Defined Double Quantum Dots

被引:4
|
作者
Lin, Ting [1 ,2 ]
Gu, Si-Si [1 ,2 ]
Xu, Yong-Qiang [1 ,2 ]
Jiang, Shun-Li [1 ,2 ]
Ye, Shu-Kun [1 ,2 ]
Wang, Bao-Chuan [1 ,2 ]
Li, Hai-Ou [1 ,2 ]
Guo, Guang-Can [1 ,2 ,3 ]
Zou, Chang-Ling [1 ,2 ,3 ]
Hu, Xuedong [4 ]
Cao, Gang [1 ,2 ,3 ]
Guo, Guo-Ping [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Univ Sci & Technol China, Ctr Excellence Quantum Informat & Quantum Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Hefei Natl Lab, Hefei 230088, Peoples R China
[4] SUNY Buffalo, Dept Phys, Buffalo, NY 14260 USA
基金
中国国家自然科学基金;
关键词
Semiconductor qubit; circuit quantum electrodynamics (QED); semiconductor quantum dot; scalable semiconductor-based circuit QED architectures; SINGLE-ELECTRON; QUBITS; SILICON;
D O I
10.1021/acs.nanolett.3c00036
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We fabricate and characterize a hybrid quantum device that consists of five gate-defined double quantum dots (DQDs) and a high impedance NbTiN transmission resonator. The controllable interactions between DQDs and the resonator are spectroscopically explored by measuring the microwave transmission through the resonator in the detuning parameter space. Utilizing the high tunability of the system parameters and the high cooperativity (Ctotal > 17.6) interaction between the qubit ensemble and the resonator, we tune the charge-photon coupling and observe the collective microwave response changing from linear to nonlinear. Our results present the maximum number of DQDs coupled to a resonator and manifest a potential platform for scaling up qubits and studying collective quantum effects in semiconductor-superconductor hybrid cavity quantum electrodynamics systems.
引用
收藏
页码:4176 / 4182
页数:7
相关论文
共 50 条
  • [1] Gate-defined quantum dots in intrinsic silicon
    Angus, Susan J.
    Ferguson, Andrew J.
    Dzurak, Andrew S.
    Clark, Robert G.
    NANO LETTERS, 2007, 7 (07) : 2051 - 2055
  • [2] Gate-defined quantum dots on carbon nanotubes
    Biercuk, MJ
    Garaj, S
    Mason, N
    Chow, JM
    Marcus, CM
    NANO LETTERS, 2005, 5 (07) : 1267 - 1271
  • [3] Quantum computation on gate-defined semiconductor quantum dots
    Li HaiOu
    Yao Bing
    Tu Tao
    Guo GuoPing
    CHINESE SCIENCE BULLETIN, 2012, 57 (16): : 1919 - 1924
  • [4] Quantum computation on gate-defined semiconductor quantum dots
    LI HaiOu
    Science Bulletin, 2012, (16) : 1919 - 1924
  • [5] Electron confinement in graphene with gate-defined quantum dots
    Fehske, Holger
    Hager, Georg
    Pieper, Andreas
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2015, 252 (08): : 1868 - 1871
  • [6] Electron dynamics in graphene with gate-defined quantum dots
    Pieper, A.
    Heinisch, R. L.
    Fehske, H.
    EPL, 2013, 104 (04)
  • [7] Bell inequality violation in gate-defined quantum dots
    Paul Steinacker
    Tuomo Tanttu
    Wee Han Lim
    Nard Dumoulin Stuyck
    MengKe Feng
    Santiago Serrano
    Ensar Vahapoglu
    Rocky Y. Su
    Jonathan Y. Huang
    Cameron Jones
    Kohei M. Itoh
    Fay E. Hudson
    Christopher C. Escott
    Andrea Morello
    Andre Saraiva
    Chih Hwan Yang
    Andrew S. Dzurak
    Arne Laucht
    Nature Communications, 16 (1)
  • [8] Gate-defined coupled quantum dots in topological insulators
    Ertler, Christian
    Raith, Martin
    Fabian, Jaroslav
    PHYSICAL REVIEW B, 2014, 89 (07):
  • [9] Quantum Simulation of Antiferromagnetic Heisenberg Chain with Gate-Defined Quantum Dots
    van Diepen, C. J.
    Hsiao, T. -K.
    Mukhopadhyay, U.
    Reichl, C.
    Wegscheider, W.
    Vandersypen, L. M. K.
    PHYSICAL REVIEW X, 2021, 11 (04)
  • [10] Nanofabrication of Gate-defined GaAs/AlGaAs Lateral Quantum Dots
    Bureau-Oxton, Chloe
    Lemyre, Julien Camirand
    Pioro-Ladriere, Michel
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2013, (81):