Learning Correlations between Internal Coordinates to Improve 3D Cartesian Coordinates for Proteins

被引:4
|
作者
Li, Jie [1 ]
Zhang, Oufan [1 ]
Lee, Seokyoung [1 ]
Namini, Ashley [2 ]
Liu, Zi Hao [2 ,3 ]
Teixeira, Joao M. C. [2 ,4 ]
Forman-Kay, Julie D. [2 ,3 ]
Head-Gordon, Teresa [1 ,5 ,6 ]
机构
[1] Univ Calif, Pitzer Ctr Theoret Chem, Dept Chem, Berkeley, CA 94720 USA
[2] Hosp Sick Children, Mol Med Program, Toronto, ON M5S 1A8, Canada
[3] Univ Toronto, Dept Biochem, Toronto, ON M5G 1X8, Canada
[4] Univ Padua, Dept Biomed Sci, Padua, Italy
[5] Univ Calif Berkeley, Dept Bioengn & Chem, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Biomol Engn, Berkeley, CA 94720 USA
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR-DYNAMICS; BOND DISTANCES; GEOMETRY; PREDICTION; SPACE; BACKBONES; ANGLES;
D O I
10.1021/acs.jctc.2c01270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider a generic representation problem of internal coordinates (bond lengths, valence angles, and dihedral angles) and their transformation to 3-dimensional Cartesian coordinates of a biomolecule. We show that the internal-to-Cartesian process relies on correctly predicting chemically subtle correlations among t h e internal coordinates themselves, and learning these correlations increases the fidelity of the Cartesian representation. We developed a machine learning algorithm, Int2Cart, to predict bond lengths and bond angles from backbone torsion angles and residue types of a protein, which allows reconstruction of protein structures better than using fixed bond lengths and bond angles or a static library method that relies on backbone torsion angles and residue types in a local environment. The method is able to be used for structure validation, as we show that the agreement between Int2Cart-predicted bond geometries and those from an AlphaFold 2 model can be used to estimate model quality. Additionally, by using Int2Cart to reconstruct an IDP ensemble, we are able to decrease the clash rate during modeling. The Int2Cart algorithm has been implemented as a publicly accessible python package at https://github.com/ THGLab/int2cart.
引用
收藏
页码:4689 / 4700
页数:12
相关论文
共 50 条
  • [21] The construction of the Hamiltonian of an isotope substituted molecule in internal cartesian coordinates
    A. S. Makhnev
    Russian Journal of Physical Chemistry A, 2009, 83 : 418 - 423
  • [22] 3D OSEM using planograms coordinates
    Brasse, D
    Kinahan, PE
    Defrise, M
    Clackdoyle, R
    Michel, C
    Comtat, C
    2002 IEEE NUCLEAR SCIENCE SYMPOSIUM, CONFERENCE RECORD, VOLS 1-3, 2003, : 994 - 997
  • [23] Green Coordinates for Triquad Cages in 3D
    Thiery, Jean-Marc
    Boubekeur, Tamy
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [24] Fast Method For Reconstruction of 3D Coordinates
    Bolecek, Libor
    Ricny, Vaclav
    Slanina, Martin
    2012 35TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2012, : 740 - 744
  • [25] Modeling open nanophotonic systems using the Fourier modal method: generalization to 3D Cartesian coordinates
    Hazyrynen, Teppo
    Osterkryger, Andreas Dyhl
    de lasson, Jakob Rosenkrantz
    Gregersen, Niels
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2017, 34 (09) : 1632 - 1641
  • [26] Determination of 3D Coordinates of Objects from Image with Deep Learning Model
    Hossain, Md Rasel
    Rahman, Md Mahbubur
    Karim, Mohammad Rezaul
    Al Amin, Md Jaki
    Bepery, Chinmay
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 25 - 30
  • [27] TMDET:: web server for detecting transmembrane regions of proteins by using their 3D coordinates
    Tusnády, GE
    Dosztányi, Z
    Simon, I
    BIOINFORMATICS, 2005, 21 (07) : 1276 - 1277
  • [28] The M Bot robot for learning Cartesian coordinates in Secondary Education
    不详
    PIXEL-BIT- REVISTA DE MEDIOS Y EDUCACION, 2023, (66): : 286 - 301
  • [29] Learning 6D Object Pose Estimation Using 3D Object Coordinates
    Brachmann, Eric
    Krull, Alexander
    Michel, Frank
    Gumhold, Stefan
    Shotton, Jamie
    Rother, Carsten
    COMPUTER VISION - ECCV 2014, PT II, 2014, 8690 : 536 - 551
  • [30] Handling missing marker coordinates in 3D analysis
    Desjardins, P
    Plamondon, A
    Nadeau, S
    Delisle, A
    MEDICAL ENGINEERING & PHYSICS, 2002, 24 (06) : 437 - 440