CONVERGENCE IN WASSERSTEIN DISTANCE FOR EMPIRICAL MEASURES OF SEMILINEAR SPDES

被引:3
|
作者
Wang, Feng-Yu [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin, Peoples R China
来源
ANNALS OF APPLIED PROBABILITY | 2023年 / 33卷 / 01期
关键词
Wasserstein distance; empirical measure; semilinear SPDE; convergence rate;
D O I
10.1214/22-AAP1807
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The convergence rate in Wasserstein distance is estimated for the em-pirical measures of symmetric semilinear SPDEs. Unlike in the finite -dimensional case that the convergence is of algebraic order in time, in the present situation the convergence is of log order with a power given by eigen-values of the underlying linear operator.
引用
收藏
页码:70 / 84
页数:15
相关论文
共 50 条
  • [31] WASSERSTEIN CONVERGENCE RATES OF INCREASINGLY CONCENTRATING PROBABILITY MEASURES
    Hasenpflug, Mareike
    Rudolf, Daniel
    Sprungk, Bjoern
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 3320 - 3347
  • [32] Weak convergence of the finite element method for semilinear parabolic SPDEs driven by additive noise
    Tambue, Antoine
    Mukam, Jean Daniel
    RESULTS IN APPLIED MATHEMATICS, 2023, 17
  • [33] Limit laws of the empirical Wasserstein distance: Gaussian distributions
    Rippl, Thomas
    Munk, Axel
    Sturm, Anja
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 151 : 90 - 109
  • [34] Wasserstein distance and the rectifiability of doubling measures: part II
    Azzam, Jonas
    David, Guy
    Toro, Tatiana
    MATHEMATISCHE ZEITSCHRIFT, 2017, 286 (3-4) : 861 - 891
  • [35] A Weighted Approximation Approach to the Study of the Empirical Wasserstein Distance
    Mason, David M.
    HIGH DIMENSIONAL PROBABILITY VII: THE CARGESE VOLUME, 2016, 71 : 137 - 154
  • [36] ONE-DIMENSIONAL APPROXIMATION OF MEASURES IN WASSERSTEIN DISTANCE
    Chambolle, Antonin
    Duval, Vincent
    Machado, J. O. A. O. MIgUEL
    JOURNAL DE L ECOLE POLYTECHNIQUE-MATHEMATIQUES, 2025, 12
  • [37] Wasserstein distance and the rectifiability of doubling measures: part I
    Azzam, Jonas
    David, Guy
    Toro, Tatiana
    MATHEMATISCHE ANNALEN, 2016, 364 (1-2) : 151 - 224
  • [38] Wasserstein distance and the rectifiability of doubling measures: part II
    Jonas Azzam
    Guy David
    Tatiana Toro
    Mathematische Zeitschrift, 2017, 286 : 861 - 891
  • [39] A Wasserstein Distance Approach for Concentration of Empirical Risk Estimates∗
    Prashanth, L.A.
    Bhat, Sanjay P.
    Journal of Machine Learning Research, 2022, 23
  • [40] A Wasserstein Distance Approach for Concentration of Empirical Risk Estimates
    Prashanth, L. A.
    Bhat, Sanjay P.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23