A survey of multi-class imbalanced data classification methods

被引:4
|
作者
Han, Meng [1 ]
Li, Ang [1 ]
Gao, Zhihui [1 ]
Mu, Dongliang [1 ]
Liu, Shujuan [1 ]
机构
[1] North Minzu Univ, Sch Comp Sci & Engn, Yinchuan, Ningxia, Peoples R China
关键词
Classification; multi-class imbalance data; data preprocessing method; algorithm-level classification method; EXTREME LEARNING-MACHINE; SELECTION; ALGORITHM; CNN;
D O I
10.3233/JIFS-221902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In reality, the data generated in many fields are often imbalanced, such as fraud detection, network intrusion detection and disease diagnosis. The class with fewer instances in the data is called the minority class, and the minority class in some applications contains the significant information. So far, many classification methods and strategies for binary imbalanced data have been proposed, but there are still many problems and challenges in multi-class imbalanced data that need to be solved urgently. The classification methods for multi-class imbalanced data are analyzed and summarized in terms of data preprocessing methods and algorithm-level classification methods, and the performance of the algorithms using the same dataset is compared separately. In the data preprocessing methods, the methods of oversampling, under-sampling, hybrid sampling and feature selection are mainly introduced. Algorithm-level classification methods are comprehensively introduced in four aspects: ensemble learning, neural network, support vector machine and multi-class decomposition technique. At the same time, all data preprocessing methods and algorithm-level classification methods are analyzed in detail in terms of the techniques used, comparison algorithms, pros and cons, respectively. Moreover, the evaluation metrics commonly used for multi-class imbalanced data classification methods are described comprehensively. Finally, the future directions of multi-class imbalanced data classification are given.
引用
收藏
页码:2471 / 2501
页数:31
相关论文
共 50 条
  • [21] Evaluating Difficulty of Multi-class Imbalanced Data
    Lango, Mateusz
    Napierala, Krystyna
    Stefanowski, Jerzy
    FOUNDATIONS OF INTELLIGENT SYSTEMS, ISMIS 2017, 2017, 10352 : 312 - 322
  • [22] MULTI-CLASS DATA CLASSIFICATION FOR IMBALANCED DATA SET USING COMBINED SAMPLING APPROACHES
    Prachuabsupakij, Wanthanee
    Snonthornphisaj, Nuanwan
    KDIR 2011: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND INFORMATION RETRIEVAL, 2011, : 166 - 171
  • [23] A Novel Double Ensemble Algorithm for the Classification of Multi-Class Imbalanced Hyperspectral Data
    Quan, Daying
    Feng, Wei
    Dauphin, Gabriel
    Wang, Xiaofeng
    Huang, Wenjiang
    Xing, Mengdao
    REMOTE SENSING, 2022, 14 (15)
  • [24] SCALA: Scaling algorithm for multi-class imbalanced classification A novel algorithm specifically designed for multi-class multiple minority imbalanced data problems.
    Barzinji, Ala O.
    Ma, Jixin
    Ma, Chaoying
    PROCEEDINGS OF 2023 8TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2023, 2023, : 68 - 73
  • [25] GDHS: An efficient hybrid sampling method for multi-class imbalanced data classification
    Yan, Yuanting
    Lv, Yan
    Han, Shuangyue
    Yu, Chengjin
    Zhou, Peng
    Neurocomputing, 2025, 637
  • [26] Sentiment Classification from Multi-class Imbalanced Twitter Data Using Binarization
    Krawczyk, Bartosz
    McInnes, Bridget T.
    Cano, Alberto
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2017, 2017, 10334 : 26 - 37
  • [27] Adversarial oversampling for multi-class imbalanced data classification with convolutional neural networks
    Wojciechowski, Adam
    Lango, Mateusz
    FOURTH INTERNATIONAL WORKSHOP ON LEARNING WITH IMBALANCED DOMAINS: THEORY AND APPLICATIONS, VOL 183, 2022, 183 : 98 - 111
  • [28] An Experimental Analysis of Drift Detection Methods on Multi-Class Imbalanced Data Streams
    Palli, Abdul Sattar
    Jaafar, Jafreezal
    Gomes, Heitor Murilo
    Hashmani, Manzoor Ahmed
    Gilal, Abdul Rehman
    APPLIED SCIENCES-BASEL, 2022, 12 (22):
  • [29] An adaptive multi-class imbalanced classification framework based on ensemble methods and deep network
    Jiang, Xuezheng
    Wang, Junyi
    Meng, Qinggang
    Saada, Mohamad
    Cai, Haibin
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15): : 11141 - 11159
  • [30] An Algorithm for Selective Preprocessing of Multi-class Imbalanced Data
    Wojciechowski, Szymon
    Wilk, Szymon
    Stefanowski, Jerzy
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON COMPUTER RECOGNITION SYSTEMS CORES 2017, 2018, 578 : 238 - 247