Achieving a high energy storage density in Ag(Nb,Ta)O3 antiferroelectric films via nanograin engineering

被引:25
|
作者
Cheng, Hongbo [1 ,2 ]
Zhai, Xiao [3 ]
Ouyang, Jun [1 ]
Zheng, Limei [3 ]
Luo, Nengneng [4 ,5 ]
Liu, Jinpeng [1 ]
Zhu, Hanfei [1 ]
Wang, Yingying [6 ]
Hao, Lanxia [6 ]
Wang, Kun [7 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Chem & Chem Engn, Inst Adv Energy Mat & Chem, Jinan 250353, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[3] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
[4] Guangxi Univ, Sch Resources Environm & Mat, Guangxi Key Lab Proc Nonferrous Metall & Featured, Nanning 530004, Peoples R China
[5] Guangxi Univ, Ctr Nanoenergy Res, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[6] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat Min, Jinan 250061, Peoples R China
[7] China Tobacco Shandong Ind Co Ltd, Jinan Cigarette Factory, Jinan 250104, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2023年 / 12卷 / 01期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
antiferroelectrics (AFE); AgNbO3; Ag(Nb; Ta)O-3; energy storage; film capacitors; nanograin engineering; THIN-FILMS; CERAMICS; PERFORMANCE; NIOBATE; PERSPECTIVES;
D O I
10.26599/JAC.2023.9220678
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to its lead-free composition and a unique double polarization hysteresis loop with a large maximum polarization (P-max) and a small remnant polarization (P-r), AgNbO3-based antiferroelectrics (AFEs) have attracted extensive research interest for electric energy storage applications. However, a low dielectric breakdown field (E-b) limits an energy density and its further development. In this work, a highly efficient method was proposed to fabricate high-energy-density Ag(Nb,Ta)O-3 capacitor films on Si substrates, using a two-step process combining radio frequency (RF)-magnetron sputtering at 450 degrees C and post-deposition rapid thermal annealing (RTA). The RTA process at 700 degrees C led to sufficient crystallization of nanograins in the film, hindering their lateral growth by employing short annealing time of 5 min. The obtained Ag(Nb,Ta)O-3 films showed an average grain size (D) of similar to 14 nm (obtained by Debye-Scherrer formula) and a slender room temperature (RT) polarization-electric field (P- E) loop (Pr approximate to 3.8 mu C center dot cm(-2) and P-max approximate to 38 mu C center dot cm(-2) under an electric field of similar to 3.3 MV center dot cm(-1)), the P-E loop corresponding to a high recoverable energy density (W-rec) of similar to 46.4 J center dot cm(-3) and an energy efficiency (eta) of similar to 80.3%. Additionally, by analyzing temperature-dependent dielectric property of the film, a significant downshift of the diffused phase transition temperature (TM2-M3) was revealed, which indicated the existence of a stable relaxor-like
引用
收藏
页码:196 / 206
页数:11
相关论文
共 50 条
  • [1] Enhanced energy storage performance in Ag(Nb,Ta)O3 films via interface engineering
    Zhai, Xiao
    Jun, Ouyang
    Kuai, Weijie
    Xue, Yinxiu
    Wang, Kun
    Luo, Nengneng
    Cheng, Hongbo
    Zhu, Hanfei
    Liu, Chao
    Zheng, Limei
    JOURNAL OF MATERIOMICS, 2025, 11 (02)
  • [2] Energy storage density of tailored relaxor-antiferroelectric state in Gd-doped Ag(Nb0.8Ta0.2)O3 ceramics
    Tangsuwanjinda, Sripansuang
    Montecillo, Rhys
    Chen, Cheng-Sao
    Tu, Chi -Shun
    Chen, Pin-Yi
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 7948 - 7960
  • [3] Achieving high energy storage performance of Pb(Lu1/2Nb1/2)O3 antiferroelectric ceramics via equivalent A-site engineering
    Lv L.
    Zhuo F.
    He C.
    Wang Z.
    Su R.
    Liu Y.
    Yang X.
    Long X.
    J. Eur. Ceram. Soc., 13 (5606-5614): : 5606 - 5614
  • [4] Infrared and microwave dielectric response of the disordered antiferroelectric Ag(Ta,Nb)O3 system
    Petzelt, J
    Kamba, S
    Buixaderas, E
    Bovtun, V
    Zikmund, Z
    Kania, A
    Koukal, V
    Pokorny, J
    Polívka, J
    Pashkov, V
    Komandin, G
    Volkov, A
    FERROELECTRICS, 1999, 223 (1-4) : 235 - 246
  • [5] Ultrahigh Energy Storage in (Ag,Sm)(Nb,Ta)O3 Ceramics with a Stable Antiferroelectric Phase, Low Domain-Switching Barriers, and a High Breakdown Strength
    Zeng, Fanfeng
    Zeng, Haolin
    Zhang, Yangyang
    Shen, Meng
    Hu, Yongming
    Gao, Shuaibing
    Jiang, Shenglin
    He, Yunbin
    Zhang, Qingfeng
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (38) : 51170 - 51181
  • [6] High energy density in Ag 0.5 Na 0.5 (Nb 1-x Ta x )O 3 antiferroelectric ceramics
    Tian, Ye
    Li, Lei
    Xu, Yonghao
    Ma, Ming
    Chen, Chen
    Sun, Zixiong
    She, Liaona
    Chen, Guanjun
    Wang, Tong
    Ge, Wanyin
    Wei, Xiaoyong
    Jin, Li
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2024, 44 (12) : 6967 - 6977
  • [7] The electric and dielectric properties of Ag(Ta0.5Nb0.5)O3 and Ag(Ta0.8Nb0.2)O3 thick films
    Lee, Ku-Tak
    Koh, Jung-Hyuk
    CURRENT APPLIED PHYSICS, 2011, 11 (03) : S56 - S59
  • [8] Review of Ag(Nb, Ta)O3 as a functional material
    Valant, Matjaz
    Axelsson, Anna-Karin
    Alford, Neil
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2007, 27 (07) : 2549 - 2560
  • [9] Structural and Electrical Characterization of Ag(Ta0.5Nb0.5)O3 and Ag(Ta0.8Nb0.2)O3 Ceramics
    Lee, Ku-tak
    Yun, Seok-Woo
    Koh, Jung-Hyuk
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2011, 59 (03) : 2478 - 2481
  • [10] Ferroelectric properties of (Ag, Li)(Nb, Ta)O3 ceramics
    Sakabe, Y.
    Takeda, T.
    Ogiso, Y.
    Wada, N.
    1600, Japan Society of Applied Physics (40):