Review of interpretable machine learning for process industries

被引:34
|
作者
Carter, A. [1 ]
Imtiaz, S. [1 ]
Naterer, G. F. [2 ]
机构
[1] Mem Univ, St John, NF A1C 5S7, Canada
[2] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Machine learning; Process industries; Risk management; Model interpretability; PRINCIPAL COMPONENT ANALYSIS; PROCESS FAULT-DETECTION; USEFUL LIFE ESTIMATION; NEURAL-NETWORK MODELS; PARTIAL LEAST-SQUARES; ARTIFICIAL-INTELLIGENCE; OFFSHORE OIL; BLACK-BOX; DIAGNOSIS; PREDICTION;
D O I
10.1016/j.psep.2022.12.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This review article examines recent advances in the use of machine learning for process industries. The article presents common process industry tasks that researchers are solving with machine learning techniques. It then identifies a lack of consensus among past studies when selecting an appropriate model given a prescribed application. Furthermore, the article identifies that relatively few past studies have considered model inter-pretability - a "black-box" challenge holding back machine learning's implementation in more high-risk in-dustrial applications. This interdisciplinary field of engineering and computer science is still reasonably young. Additional research is recommended to standardize methods and establish a strategic framework to manage risk during adoption of machine learning models.
引用
收藏
页码:647 / 659
页数:13
相关论文
共 50 条
  • [11] Capability Indices for Digitized Industries: A Review and Outlook of Machine Learning Applications for Predictive Process Control
    Mayer, Jan
    Jochem, Roland
    PROCESSES, 2024, 12 (08)
  • [12] Interpretable machine learning assessment
    Han, Henry
    Wu, Yi
    Wang, Jiacun
    Han, Ashley
    NEUROCOMPUTING, 2023, 561
  • [13] How Interpretable Machine Learning Can Benefit Process Understanding in the Geosciences
    Jiang, Shijie
    Sweet, Lily-belle
    Blougouras, Georgios
    Brenning, Alexander
    Li, Wantong
    Reichstein, Markus
    Denzler, Joachim
    Wei, Shangguan
    Yu, Guo
    Huang, Feini
    Zscheischler, Jakob
    EARTHS FUTURE, 2024, 12 (07)
  • [14] Algorithms for Interpretable Machine Learning
    Rudin, Cynthia
    PROCEEDINGS OF THE 20TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING (KDD'14), 2014, : 1519 - 1519
  • [15] Interpretable machine learning for genomics
    Watson, David S.
    HUMAN GENETICS, 2022, 141 (09) : 1499 - 1513
  • [16] Interpretable machine learning for genomics
    David S. Watson
    Human Genetics, 2022, 141 : 1499 - 1513
  • [17] Techniques for Interpretable Machine Learning
    Du, Mengnan
    Li, Ninghao
    Hu, Xia
    COMMUNICATIONS OF THE ACM, 2020, 63 (01) : 68 - 77
  • [18] Impacts of process parameters on diesel reforming via interpretable machine learning
    Liang, Zhenwei
    Huang, Jiazhun
    Liu, Yujia
    Wang, Tiejun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 88 : 658 - 665
  • [19] Interpretable Machine Learning for TabPFN
    Rundel, David
    Kobialka, Julius
    von Crailsheim, Constantin
    Feurer, Matthias
    Nagler, Thomas
    Ruegamer, David
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, PT II, XAI 2024, 2024, 2154 : 465 - 476
  • [20] Interpretable Machine Learning in Healthcare
    Ahmad, Muhammad Aurangzeb
    Eckert, Carly
    Teredesai, Ankur
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 447 - 447