Review of interpretable machine learning for process industries

被引:34
|
作者
Carter, A. [1 ]
Imtiaz, S. [1 ]
Naterer, G. F. [2 ]
机构
[1] Mem Univ, St John, NF A1C 5S7, Canada
[2] Univ Prince Edward Isl, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Machine learning; Process industries; Risk management; Model interpretability; PRINCIPAL COMPONENT ANALYSIS; PROCESS FAULT-DETECTION; USEFUL LIFE ESTIMATION; NEURAL-NETWORK MODELS; PARTIAL LEAST-SQUARES; ARTIFICIAL-INTELLIGENCE; OFFSHORE OIL; BLACK-BOX; DIAGNOSIS; PREDICTION;
D O I
10.1016/j.psep.2022.12.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This review article examines recent advances in the use of machine learning for process industries. The article presents common process industry tasks that researchers are solving with machine learning techniques. It then identifies a lack of consensus among past studies when selecting an appropriate model given a prescribed application. Furthermore, the article identifies that relatively few past studies have considered model inter-pretability - a "black-box" challenge holding back machine learning's implementation in more high-risk in-dustrial applications. This interdisciplinary field of engineering and computer science is still reasonably young. Additional research is recommended to standardize methods and establish a strategic framework to manage risk during adoption of machine learning models.
引用
收藏
页码:647 / 659
页数:13
相关论文
共 50 条
  • [1] Review on Interpretable Machine Learning in Smart Grid
    Xu, Chongchong
    Liao, Zhicheng
    Li, Chaojie
    Zhou, Xiaojun
    Xie, Renyou
    ENERGIES, 2022, 15 (12)
  • [2] Interpretable machine learning for dementia: A systematic review
    Martin, Sophie A.
    Townend, Florence J.
    Barkhof, Frederik
    Cole, James H.
    ALZHEIMERS & DEMENTIA, 2023, 19 (05) : 2135 - 2149
  • [3] Industrial data science - a review of machine learning applications for chemical and process industries
    Mowbray, Max
    Vallerio, Mattia
    Perez-Galvan, Carlos
    Zhang, Dongda
    Del Rio Chanona, Antonio
    Navarro-Brull, Francisco J.
    Reaction Chemistry and Engineering, 2022, 7 (07): : 1471 - 1509
  • [4] Industrial data science - a review of machine learning applications for chemical and process industries
    Mowbray, Max
    Vallerio, Mattia
    Perez-Galvan, Carlos
    Zhang, Dongda
    Chanona, Antonio Del Rio
    Navarro-Brull, Francisco J.
    REACTION CHEMISTRY & ENGINEERING, 2022, 7 (07): : 1471 - 1509
  • [5] Interpretable machine learning for weather and climate prediction: A review
    Yang, Ruyi
    Hu, Jingyu
    Li, Zihao
    Mu, Jianli
    Yu, Tingzhao
    Xia, Jiangjiang
    Li, Xuhong
    Dasgupta, Aritra
    Xiong, Haoyi
    ATMOSPHERIC ENVIRONMENT, 2024, 338
  • [6] Review of Interpretable Machine Learning for Information Resource Management
    Liu Z.
    Wang J.
    Data Analysis and Knowledge Discovery, 2024, 8 (01) : 16 - 29
  • [7] Interpretable Machine Learning
    Chen V.
    Li J.
    Kim J.S.
    Plumb G.
    Talwalkar A.
    Queue, 2021, 19 (06): : 28 - 56
  • [8] Reinforcement Learning in Process Industries: Review and Perspective
    Dogru, Oguzhan
    Xie, Junyao
    Prakash, Om
    Chiplunkar, Ranjith
    Soesanto, Jansen
    Chen, Hongtian
    Velswamy, Kirubakaran
    Ibrahim, Fadi
    Huang, Biao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2024, 11 (02) : 283 - 300
  • [9] Reinforcement Learning in Process Industries:Review and Perspective
    Oguzhan Dogru
    Junyao Xie
    Om Prakash
    Ranjith Chiplunkar
    Jansen Soesanto
    Hongtian Chen
    Kirubakaran Velswamy
    Fadi Ibrahim
    Biao Huang
    IEEE/CAA Journal of Automatica Sinica, 2024, 11 (02) : 283 - 300
  • [10] Review Study of Interpretation Methods for Future Interpretable Machine Learning
    Mi, Jian-Xun
    Li, An-Di
    Zhou, Li-Fang
    IEEE ACCESS, 2020, 8 (08): : 191969 - 191985