共 50 条
A Zero Density Estimate for Dedekind Zeta Functions
被引:5
|作者:
Thorner, Jesse
[1
]
Zaman, Asif
[2
]
机构:
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
基金:
加拿大自然科学与工程研究理事会;
关键词:
REGION;
D O I:
10.1093/imrn/rnac015
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Given a nontrivial finite group G, we prove the first zero density estimate for families of Dedekind zeta functions associated to Galois extensions K/Q with Gal(K/Q) congruent to G that does not rely on unproven progress towards the strong form of Artin's conjecture. We use this to remove the hypothesis of the strong Artin conjecture from the work of Pierce, Turnage-Butterbaugh, and Wood on the average error in the Chebotarev density theorem and l-torsion in ideal class groups.
引用
收藏
页码:6739 / 6761
页数:23
相关论文