AoI-Aware Resource Allocation for Platoon-Based C-V2X Networks via Multi-Agent Multi-Task Reinforcement Learning

被引:30
|
作者
Parvini, Mohammad [1 ]
Javan, Mohammad Reza [2 ]
Mokari, Nader [1 ]
Abbasi, Bijan [1 ]
Jorswieck, Eduard A. [3 ]
机构
[1] Tarbiat Modares Univ, Dept Elect & Comp Engn, Tehran 1411713116, Iran
[2] Shahrood Univ Technol, Fac Elect Engn, Shahrood 3619995161, Iran
[3] TU Braunschweig, Inst Commun Technol, D-2338106 Braunschweig, Germany
关键词
Resource management; Cams; Long Term Evolution; Wireless communication; Vehicle dynamics; Task analysis; Interference; V2X; AoI; Platoon cooperation; MARL; MANAGEMENT; COMMUNICATION; VEHICLES;
D O I
10.1109/TVT.2023.3259688
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper investigates the problem of age of information (AoI) aware radio resource management for a platooning system. Multiple autonomous platoons exploit the cellular wireless vehicle-to-everything (C-V2X) communication technology to disseminate the cooperative awareness messages (CAMs) to their followers while ensuring timely delivery of safety-critical messages to the Road-Side Unit (RSU). To lower the computational load at the RSU and cope with the challenges of dynamic channel conditions, we exploit a distributed resource allocation framework based on multi-agent reinforcement learning (MARL), where each platoon leader (PL) acts as an agent and interacts with the environment to learn its optimal policy. Motivated by the existing literature in RL, we propose two novel MARL frameworks based on the multi-agent deep deterministic policy gradient (MADDPG), named Modified MADDPG, and Modified MADDPG with task decomposition. Both algorithms train two critics with the following goals: A global critic which estimates the global expected reward and motivates the agents toward a cooperating behavior and an exclusive local critic for each agent that estimates the local individual reward. Furthermore, based on the tasks each agent has to accomplish, in the second algorithm, the holistic individual reward of each agent is decomposed into multiple sub-reward functions where task-wise value functions are learned separately. Numerical results indicate our proposed algorithms' effectiveness compared with other contemporary RL frameworks, e.g., federated reinforcement learning (FRL) in terms of AoI performance and CAM message transmission probability.
引用
收藏
页码:9880 / 9896
页数:17
相关论文
共 50 条
  • [41] Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning
    Naderializadeh, Navid
    Sydir, Jaroslaw J.
    Simsek, Meryem
    Nikopour, Hosein
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (06) : 3507 - 3523
  • [42] Resource Management in Wireless Networks via Multi-Agent Deep Reinforcement Learning
    Naderializadeh, Navid
    Sydir, Jaroslaw
    Simsek, Meryem
    Nikopour, Hosein
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [43] Multi-Agent Reinforcement Learning for Resource Allocation in Io T Networks with Edge Computing
    Xiaolan Liu
    Jiadong Yu
    Zhiyong Feng
    Yue Gao
    中国通信, 2020, 17 (09) : 220 - 236
  • [44] DISTRIBUTED RESOURCE ALLOCATION IN 5G NETWORKS WITH MULTI-AGENT REINFORCEMENT LEARNING
    Menard, Jon
    Al-Habashna, Ala'a
    Wainer, Gabriel
    Boudreau, Gary
    PROCEEDINGS OF THE 2022 ANNUAL MODELING AND SIMULATION CONFERENCE (ANNSIM'22), 2022, : 802 - 813
  • [45] Attentional Communication for Multi-Agent Distributed Resource Allocation in V2X Networks
    Hammami, Nessrine
    Nguyen, Kim Khoa
    Purmehdi, Hakimeh
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 5653 - 5658
  • [46] Task-oriented Resource Allocation for Mobile Edge Computing with Multi-Agent Reinforcement Learning
    Zou, Yue
    Shen, Fei
    Yan, Feng
    Tang, Liang
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,
  • [47] Multi-Agent Reinforcement Learning based Adaptive Parameter Optimization for Semi-Persistent Scheduling in C-V2X Mode 4
    Fan, Pengcheng
    Chen, Xinyu
    Zhao, Jing
    Lu, Ning
    Wang, Ping
    2024 IEEE 21ST INTERNATIONAL CONFERENCE ON MOBILE AD-HOC AND SMART SYSTEMS, MASS 2024, 2024, : 143 - 149
  • [48] Task Placement and Resource Allocation for Edge Machine Learning: A GNN-Based Multi-Agent Reinforcement Learning Paradigm
    Li Y.
    Zhang X.
    Zeng T.
    Duan J.
    Wu C.
    Wu D.
    Chen X.
    IEEE Transactions on Parallel and Distributed Systems, 2023, 34 (12) : 3073 - 3089
  • [49] Optimization of Multi-Agent Handover Based on Team Model in C-V2X Environments
    Liu, Bingyi
    Wang, Dongdong
    Shi, Haiyong
    Wang, Enshu
    Wu, Libing
    Wang, Jianping
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (11): : 2806 - 2820
  • [50] Context-aware resource allocation for IoRT-aware business processes based on decentralized multi-agent reinforcement learning
    Fattouch, Najla
    Ben Lahmar, Imen
    Boukadi, Khouloud
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (01):