MPANet: Multi-scale Pyramid Attention Network for Collaborative Modeling Spatio-Temporal Patterns of Default Mode Network

被引:0
|
作者
Yuan, Hang [1 ,2 ]
Li, Xiang [1 ,2 ]
Wei, Benzheng [1 ,2 ]
机构
[1] Shandong Univ Tradit Chinese Med, Ctr Med Artificial Intelligence, Qingdao 266112, Shandong, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Qingdao Acad Chinese Med Sci, Qingdao 266112, Shandong, Peoples R China
关键词
Shallow feature characterization; Holistic modeling; Spatio-temporal patterns; Default mode network; ORGANIZATION; OVERLAP;
D O I
10.1007/978-981-99-8388-9_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The functional activity of the default mode network (DMN) in the resting state is complex and spontaneous. Modeling spatio-temporal patterns of DMN based on four-dimensional Resting-state functional Magnetic Resonance Imaging (Rs-fMRI) provides a basis for exploring spontaneous brain functional activities. However, how to utilize spatio-temporal features to complete the multi-level description of 4D Rs-fMRI with diverse characteristics in the shallow stage of the model and accurately characterize the DMN holistic spatio-temporal patterns remains challenging in the current DMN spatio-temporal patterns modeling. To this end, we propose a Multi-scale Pyramid Attention Network (MPANet) to focus on shallow features and model the spatio-temporal patterns of resting-state personalized DMN. Specifically, in the spatial stage, we design a multi-scale pyramid block in the shallow layer to expand the receptive field and extract granular information at different levels, which realize feature enhancement and guides the model to characterize the DMN spatial pattern. In the temporal stage, parallel guidance from spatial to the temporal pattern is achieved through the fast down-sampling operation and introduction of multi-head attention blocks for a more effective fusion of spatio-temporal features. The results based on a publicly available dataset demonstrate that MPANet outperforms other state-of-the-art methods. This network presents a robust tool for modeling the spatio-temporal patterns of individuals with DMN, and its exceptional performance suggests promising potential for clinical applications.
引用
收藏
页码:416 / 425
页数:10
相关论文
共 50 条
  • [41] Statistical Abstraction for Multi-scale Spatio-temporal Systems
    Michaelides, Michalis
    Hillston, Jane
    Sanguinetti, Guido
    ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2019, 29 (04):
  • [42] Statistical Abstraction for Multi-scale Spatio-Temporal Systems
    Michaelides, Michalis
    Hillston, Jane
    Sanguinetti, Guido
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2017), 2017, 10503 : 243 - 258
  • [43] Multi-scale integration for spatio-temporal ecoregioning delineation
    Leibovici, Didier G.
    Jackson, Mike
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2011, 2 (02) : 105 - 119
  • [44] Multi-scale Graphical Models for Spatio-Temporal Processes
    Janoos, Firdaus
    Denli, Huseyin
    Subrahmanya, Niranjan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [45] Multi-scale spatio-temporal analysis of human mobility
    Alessandretti, Laura
    Sapiezynski, Piotr
    Lehmann, Sune
    Baronchelli, Andrea
    PLOS ONE, 2017, 12 (02):
  • [46] Multi-Scale Spatio-Temporal Dynamics of Histone Modifications
    Celen, Irem
    Doh, Jung
    Sabanayagam, Chandran
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 350A - 350A
  • [47] Multi-Attention Spatio-Temporal Feature Extraction Network for Image Deraining
    Feng, Shangyu
    Yin, Dejun
    Sun, Shijun
    2023 8th International Conference on Intelligent Computing and Signal Processing, ICSP 2023, 2023, : 1804 - 1809
  • [48] Spatio-Temporal Deformable Attention Network for Video Deblurring
    Zhang, Huicong
    Xie, Haozhe
    Yao, Hongxun
    COMPUTER VISION - ECCV 2022, PT XVI, 2022, 13676 : 581 - 596
  • [49] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [50] Spatio-Temporal Convolution-Attention Video Network
    Diba, Ali
    Sharma, Vivek
    Arzani, Mohammad. M.
    Van Gool, Luc
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 859 - 869