Thermodynamic performance analysis of solid oxide fuel cell - combined cooling, heating and power system with integrated supercritical CO2 power cycle - organic Rankine cycle and absorption refrigeration cycle

被引:8
|
作者
Zeng, Rong [1 ]
Gan, Jijuan [1 ]
Guo, Baoxin [2 ]
Zhang, Xiaofeng [3 ]
Li, Hongqiang [4 ]
Yin, Wei [5 ]
Zhang, Guoqiang [4 ]
机构
[1] Xiangtan Univ, Coll Civil Engn, Xiangtan 411105, Hunan, Peoples R China
[2] China Construct First Grp Construct & Dev Co Ltd, Beijing 100017, Peoples R China
[3] Changsha Univ Sci & Technol, Coll Energy & Power Engn, Changsha 410114, Hunan, Peoples R China
[4] Hunan Univ, Coll Civil Engn, Natl Ctr Int Res Collaborat Bldg Safety & Environm, Changsha 410082, Hunan, Peoples R China
[5] Hunan Univ Sci & Technol, Sch Civil Engn, Xiangtan 411201, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; Supercritical CO 2 power cycle; organic; Rankine cycle; Combined cooling; heating and power; Energy utilization diagram; ENERGY-UTILIZATION; SOFC; SIMULATION;
D O I
10.1016/j.energy.2023.129133
中图分类号
O414.1 [热力学];
学科分类号
摘要
A novel cascade energy utilization system with Solid Oxide Fuel Cell (SOFC) as the prime mover is designed and analyzed. The upper loop contains SOFC and Gas Turbine (GT), and the bottom loop includes Supercritical CO2 (SCO2) power cycle - Organic Rankine Cycle (ORC) combined cycle, single - effect Absorption Refrigeration Cycle (ARC), and heating subsystem. Based on simulation data and mathematical models of the system, energy analysis, conventional and graphical exergy analysis, and sensitivity analysis are conducted. The simulation result demonstrates that the net power efficiency, overall energy efficiency, exergy efficiency and SOFC electrical generation efficiency are 59.62%, 77.61%, 59.08% and 43.18%, respectively. The exergy analysis reveals that the system exergy losses obtained from conventional exergy and graphical exergy analysis are 383.29 kW and 372.46 kW, respectively, a relative error of 2.91%. However, the SOFC subsystem has the greatest exergy destruction, reaching 65.77% (graphical exergy analysis) or 65.06% (conventional exergy analysis) of the total system exergy loss. The system with favorable energy efficiency provides a reference direction for the future research and optimization of Solid Oxide Fuel Cell (SOFC) - Combined Cooling, Heating and Power (CCHP) system.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Thermoeconomic analysis of a novel combined cooling, heating and power system based on solar organic Rankine cycle and cascade refrigeration cycle
    Aghaziarati, Zeinab
    Aghdam, Abolfazl Hajizadeh
    RENEWABLE ENERGY, 2021, 164 : 1267 - 1283
  • [12] Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
    Vasquez Padilla, Ricardo
    Ramos Archibold, Antonio
    Demirkaya, Gokmen
    Besarati, Saeb
    Goswami, D. Yogi
    Rahman, Muhammad M.
    Stefanakos, Elias L.
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2012, 134 (03):
  • [13] Analysis of combined cooling heating and power generation from organic Rankine cycle and absorption system
    Chaiyat, Nattaporn
    Kiatsiriroat, Tanongkiat
    ENERGY, 2015, 91 : 363 - 370
  • [14] Simultaneous optimization of combined supercritical CO2 Brayton cycle and organic Rankine cycle integrated with concentrated solar power system
    Liang, Yingzong
    Chen, Jiansheng
    Luo, Xianglong
    Chen, Jianyong
    Yang, Zhi
    Chen, Ying
    JOURNAL OF CLEANER PRODUCTION, 2020, 266 (266)
  • [15] Thermodynamic analysis of a solar refrigeration system based on combined supercritical CO2 power and cascaded refrigeration cycle
    Almatrafi, Eydhah
    Khaliq, Abdul
    Kumar, Rajesh
    Bamasag, Ahmed
    Siddiqui, Muhammad Ehtisham
    INTERNATIONAL JOURNAL OF EXERGY, 2023, 41 (02) : 182 - 196
  • [16] Analysis of a novel combined cooling and power system by integrating of supercritical CO2 Brayton cycle and transcritical ejector refrigeration cycle
    Huang, Yulei
    Jiang, Peixue
    Zhu, Yinhai
    ENERGY CONVERSION AND MANAGEMENT, 2022, 269
  • [17] Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle
    Pierobon, Leonardo
    Rokni, Masoud
    Larsen, Ulrik
    Haglind, Fredrik
    RENEWABLE ENERGY, 2013, 60 : 226 - 234
  • [18] Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration
    Kim, Kyoung Hoon
    Perez-Blanco, Horacio
    APPLIED THERMAL ENGINEERING, 2015, 91 : 964 - 974
  • [19] Energy, economic, and environmental analysis of combined heating and power-organic Rankine cycle and combined cooling, heating, and power-organic Rankine cycle systems
    Hueffed, A. K.
    Mago, P. J.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A1) : 24 - 32
  • [20] Thermodynamic analysis of a supercritical CO 2 Brayton cycle integrated with solid oxide fuel cell
    Beygul, Semanur
    Kalinci, Yildiz
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 67 : 933 - 941