Numerical analysis of the effect of ventilation door on the propagation characteristics of gas explosion shock waves

被引:2
|
作者
Zhang, Xue-bo [1 ,2 ,3 ,4 ]
Han, Lin-xiu [1 ]
Ren, Jing-zhang [1 ,2 ,3 ]
Liu, Jia-jia [1 ,2 ,3 ]
机构
[1] Henan Polytech Univ, Coll Safety Sci & Engn, Jiaozuo 454003, Peoples R China
[2] State Key Lab Cultivat Base Gas Geol & Gas Control, Jiaozuo 454003, Peoples R China
[3] State Collaborat Innovat Ctr Coal Work Safety & Cl, Jiaozuo 454000, Peoples R China
[4] Henan Shenhuo Grp Co Ltd, Yongcheng 476600, Peoples R China
关键词
Ventilation door; Gas explosion; Numerical simulation; Opening degree; Overpressure peak; DEFLAGRATION; ACCIDENTS; AIR;
D O I
10.1007/s40948-023-00675-4
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ventilation door are commonly found in tunnels and other underground engineering ventilation structures, disaster periods using its explosion isolation, explosion relief, wind regulation characteristics for disaster prevention and mitigation is of great significance. This paper numerically simulates the propagation characteristics of the gas explosion shock wave in the nearby tunnel when the ventilation door are opened at different degrees, and analyzes the influence mechanism of the opening degree on the change law of the shock wave overpressure distribution in the nearby tunnel. The results show that the shock wave forms a strong turbulence area (high pressure area) on both sides in front of the ventilation door, and the area range and the overpressure value decrease with the increase of the opening degree; the ventilation door reduce the intensity of the shock wave, so that the overpressure behind the ventilation door decreases, and the smaller the opening degree, the lower the overpressure behind the ventilation door. The secondary explosion formed shock wave and the ventilation door reflected shock wave meet to form a stronger shock wave, which leads to different opening degrees of ventilation door, its before, after the roadway and after the bifurcation of the main roadway in the measured points of the overpressure change curve is different, the main difference is that the peak overpressure for the first wave or the second wave peak. The peak overpressure in the tunnel before and after the ventilation door decreases and increases respectively with the increase of the opening length, and the overall decay of the peak overpressure at 5 m and 10 m before the ventilation door is 49.56% and 4.04% respectively and only has an effect on the peak overpressure in main tunnel within 20 m from the bifurcation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Research on the numerical simulation of dynamic explosion shock wave propagation characteristics between floors
    Wu, Ke
    Chen, Bo
    Li, Hao
    Zhang, Yunfeng
    Zhang, Damin
    Wu, Yixuan
    Sui, Yaguang
    AIP ADVANCES, 2025, 15 (01)
  • [23] Numerical simulation and experimental research on the effect of syneresis on the propagation of shock waves in a gas-liquid foam
    E. I. Vasil’ev
    S. Yu. Mitichkin
    V. G. Testov
    Khu Khaibo
    Technical Physics, 1997, 42 : 1241 - 1248
  • [24] Numerical simulation and experimental research on the effect of syneresis on the propagation of shock waves in a gas-liquid foam
    Vasil'ev, EI
    Mitichkin, SY
    Testov, VG
    Khaibo, K
    TECHNICAL PHYSICS, 1997, 42 (11) : 1241 - 1248
  • [25] Study on effect's of reflected shock wave on flame propagation in gas explosion
    Jian, CG
    Lin, BQ
    Zhou, SN
    PROGRESS IN SAFETY SCIENCE AND TECHNOLOGY, VOL 4, PTS A and B, 2004, 4 : 1632 - 1636
  • [26] Experimental study of foam ceramics effect on shock wave propagation of gas explosion
    Zhang Jinfeng
    Nie Baisheng
    Yang Yi
    Hu Tiezhu
    Gu Xiaomin
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL VII, 2007, : 453 - 455
  • [27] Flame propagation characteristics of deposited coal dust explosion induced by shock waves of different intensities
    Pei B.
    Zhang Z.
    Pan R.
    Yu M.
    Chen L.
    Wen X.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 (02): : 498 - 506
  • [30] Influence of obstacles on shock wave propagation of gas explosion
    Jing G.
    Sun Y.
    Ban T.
    Peng L.
    He X.
    Meitan Xuebao/Journal of the China Coal Society, 2021, 46 : 312 - 318