Seasonal Changes in Atmospheric Heat Transport to the Arctic Under Increased CO2

被引:4
|
作者
Hahn, L. C. [1 ]
Armour, K. C. [2 ,3 ]
Battisti, D. S. [2 ]
Donohoe, A. [4 ]
Fajber, R. [5 ]
机构
[1] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA 92093 USA
[2] Univ Washington, Dept Atmospher Sci, Seattle, WA USA
[3] Univ Washington, Sch Oceanog, Seattle, WA USA
[4] Univ Washington, Polar Sci Ctr, Appl Phys Lab, Seattle, WA USA
[5] McGill Univ, Atmospher & Ocean Sci, Montreal, PQ, Canada
基金
美国国家科学基金会;
关键词
Arctic; climate change; heat transport; CMIP6; PAMIP; sea-ice loss; POLAR AMPLIFICATION; ENERGY-TRANSPORT; TEMPERATURE FEEDBACKS; CLIMATE FEEDBACKS; MODEL; EQUILIBRIUM; AQUAPLANET; RADIATION; CYCLE;
D O I
10.1029/2023GL105156
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Arctic warming under increased CO2 peaks in winter, but is influenced by summer forcing via seasonal ocean heat storage. Yet changes in atmospheric heat transport into the Arctic have mainly been investigated in the annual mean or winter, with limited focus on other seasons. We investigate the full seasonal cycle of poleward heat transport modeled with increased CO2 or with individually applied Arctic sea-ice loss and global sea-surface warming. We find that a winter reduction in dry heat transport is driven by Arctic sea-ice loss and warming, while a summer increase in moist heat transport is driven by sub-Arctic warming and moistening. Intermodel spread in Arctic warming controls spread in seasonal poleward heat transport. These seasonal changes and their intermodel spread are well-captured by down-gradient diffusive heat transport. While changes in moist and dry heat transport compensate in the annual-mean, their opposite seasonality may support non-compensating effects on Arctic warming.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] SEASONAL CHANGES OF SOIL MOISTURE INDUCED BY INCREASED CO2 AS SIMULATED BY THE ATMOSPHERIC GENERAL CIRCULATION AND MIXED LAYER OCEAN MODEL
    赵宗慈
    Acta Meteorologica Sinica, 1992, (02) : 170 - 178
  • [22] Increased atmospheric CO2 and litter quality
    Environ Rev, 1 (1-12):
  • [23] Nitrogen deposition, terrestrial carbon uptake and changes in the seasonal cycle of atmospheric CO2
    Erickson, DJ
    GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (21) : 3313 - 3316
  • [24] The CO2 seasonal cycle as a tracer of transport
    Strahan, SE
    Douglass, AR
    Nielsen, JE
    Boering, KA
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D12) : 13729 - 13741
  • [25] On the causes of trends in the seasonal amplitude of atmospheric CO2
    Piao, Shilong
    Liu, Zhuo
    Wang, Yilong
    Ciais, Philippe
    Yao, Yitong
    Peng, Shushi
    Chevallier, Frederic
    Friedlingstein, Pierre
    Janssens, Ivan A.
    Penuelas, Josep
    Sitch, Stephen
    Wang, Tao
    GLOBAL CHANGE BIOLOGY, 2018, 24 (02) : 608 - 616
  • [26] Seasonal and interannual variations of atmospheric CO2 and climate
    Dettinger, MD
    Ghil, M
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 1998, 50 (01): : 1 - 24
  • [27] Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2
    Landschutzer, Peter
    Gruber, Nicolas
    Bakker, Dorothee C. E.
    Stemmler, Irene
    Six, Katharina D.
    NATURE CLIMATE CHANGE, 2018, 8 (02) : 146 - +
  • [28] Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2
    Peter Landschützer
    Nicolas Gruber
    Dorothee C. E. Bakker
    Irene Stemmler
    Katharina D. Six
    Nature Climate Change, 2018, 8 : 146 - 150
  • [29] Increased atmospheric CO2 changes the photosynthetic responses of Acrocomia aculeata (Arecaceae) to drought
    Rosa, Bruno Luan
    Souza, Joao Paulo
    Pereira, Eduardo Gusmao
    ACTA BOTANICA BRASILICA, 2019, 33 (03) : 486 - 497
  • [30] Changes in the abiotic stress tolerance of wheat as a result of an increased atmospheric CO2 concentration
    Veisz, O.
    Bencze, S.
    Vida, G.
    WHEAT PRODUCTION IN STRESSED ENVIRONMENTS, 2007, 12 : 341 - +