Identification of Colon Immune Cell Marker Genes Using Machine Learning Methods

被引:0
|
作者
Yang, Yong [1 ]
Zhang, Yuhang [2 ]
Ren, Jingxin [3 ]
Feng, Kaiyan [4 ]
Li, Zhandong [5 ]
Huang, Tao [6 ,7 ]
Cai, Yudong [3 ]
机构
[1] Qianwei Hosp Jilin Prov, Changchun 130012, Peoples R China
[2] Harvard Med Sch, Brigham & Womens Hosp, Channing Div Network Med, Boston, MA 02115 USA
[3] Shanghai Univ, Sch Life Sci, Shanghai 200444, Peoples R China
[4] Guangdong AIB Polytech Coll, Dept Comp Sci, Guangzhou 510507, Peoples R China
[5] Jilin Engn Normal Univ, Coll Biol & Food Engn, Changchun 130052, Peoples R China
[6] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, Biomed Big Data Ctr,CAS Key Lab Computat Biol, Shanghai 200031, Peoples R China
[7] Chinese Acad Sci, Univ Chinese Acad Sci, Shanghai Inst Nutr & Hlth, CAS Key Lab Tissue Microenvironm & Tumor, Shanghai 200031, Peoples R China
来源
LIFE-BASEL | 2023年 / 13卷 / 09期
关键词
colon immune cell; marker gene; machine learning; feature selection; NF-KAPPA-B; INFLAMMATORY FACTOR-I; J-CHAIN; FEATURE-SELECTION; T-CELLS; CANCER; ACTIVATION; EXPRESSION; PROTEIN; DRUG;
D O I
10.3390/life13091876
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Immune cell infiltration that occurs at the site of colon tumors influences the course of cancer. Different immune cell compositions in the microenvironment lead to different immune responses and different therapeutic effects. This study analyzed single-cell RNA sequencing data in a normal colon with the aim of screening genetic markers of 25 candidate immune cell types and revealing quantitative differences between them. The dataset contains 25 classes of immune cells, 41,650 cells in total, and each cell is expressed by 22,164 genes at the expression level. They were fed into a machine learning-based stream. The five feature ranking algorithms (last absolute shrinkage and selection operator, light gradient boosting machine, Monte Carlo feature selection, minimum redundancy maximum relevance, and random forest) were first used to analyze the importance of gene features, yielding five feature lists. Then, incremental feature selection and two classification algorithms (decision tree and random forest) were combined to filter the most important genetic markers from each list. For different immune cell subtypes, their marker genes, such as KLRB1 in CD4 T cells, RPL30 in B cell IGA plasma cells, and JCHAIN in IgG producing B cells, were identified. They were confirmed to be differentially expressed in different immune cells and involved in immune processes. In addition, quantitative rules were summarized by using the decision tree algorithm to distinguish candidate immune cell types. These results provide a reference for exploring the cell composition of the colon cancer microenvironment and for clinical immunotherapy.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Identification of Immune Signatures of Novel Adjuvant Formulations Using Machine Learning
    Chaudhury, Sidhartha
    Duncan, Elizabeth H.
    Atre, Tanmaya
    Storme, Casey K.
    Beck, Kevin
    Kaba, Stephen A.
    Lanar, David E.
    Bergmann-Leitner, Elke S.
    SCIENTIFIC REPORTS, 2018, 8
  • [22] Identification of Immune Signatures of Novel Adjuvant Formulations Using Machine Learning
    Sidhartha Chaudhury
    Elizabeth H. Duncan
    Tanmaya Atre
    Casey K. Storme
    Kevin Beck
    Stephen A. Kaba
    David E. Lanar
    Elke S. Bergmann-Leitner
    Scientific Reports, 8
  • [23] MarkerML - Marker Feature Identification in Metagenomic Datasets Using Interpretable Machine Learning
    Nagpal, Sunil
    Singh, Rohan
    Taneja, Bhupesh
    Mande, Sharmila S.
    JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (11)
  • [24] Identification of key genes and their correlation with immune infiltration in osteoarthritis using integrative bioinformatics approaches and machine-learning strategies
    Xia, Duo
    Wang, Jing
    Yang, Shu
    Jiang, Cancai
    Yao, Jun
    MEDICINE, 2023, 102 (46) : E35355
  • [25] Identification of key immune-related genes and immune infiltration in diabetic nephropathy based on machine learning algorithms
    Sun, Yue
    Dai, Weiran
    He, Wenwen
    IET SYSTEMS BIOLOGY, 2023, 17 (03) : 95 - 106
  • [26] Bioinformatic Analysis and Machine Learning Methods in Neonatal Sepsis: Identification of Biomarkers and Immune Infiltration
    Jiang, Zhou
    Luo, Yujia
    Wei, Li
    Gu, Rui
    Zhang, Xuandong
    Zhou, Yuanyuan
    Zhang, Songying
    BIOMEDICINES, 2023, 11 (07)
  • [27] Identification of critical biomarkers and immune infiltration in preeclampsia through bioinformatics and machine learning methods
    Li, Weiwen
    Zhong, Lijun
    Zhao, Kewen
    Xie, Jincheng
    Deng, Shaodong
    Fang, Yunyong
    BMC PREGNANCY AND CHILDBIRTH, 2025, 25 (01)
  • [28] Identification prognosis-associated immune genes in colon adenocarcinoma
    Miao, Yandong
    Wang, Jiangtao
    Ma, Xueping
    Yang, Yuan
    Mi, Denghai
    BIOSCIENCE REPORTS, 2020, 40
  • [29] Protein fold identification using machine learning methods on contact maps
    Vani, K. Suvarna
    Kumar, K. Praveen
    2016 IEEE CONFERENCE ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (CIBCB), 2016,
  • [30] Identification of effective diagnostic genes and immune cell infiltration characteristics in small cell lung cancer by integrating bioinformatics analysis and machine learning algorithms
    Chen, Yinyi
    Han, Kexin
    Liu, Yanzhao
    Wang, Qunxia
    Wu, Yang
    Chen, Simei
    Yu, Jianlin
    Luo, Yi
    Tan, Liming
    SAUDI MEDICAL JOURNAL, 2024, 45 (08) : 771 - 782