High-temperature polymer-based nanocomposites for high energy storage performance with robust cycling stability

被引:6
|
作者
Chen, Yi-Fan [1 ]
Zheng, Yan-Tao [1 ]
Zhang, Feng-Yuan [2 ]
Liu, Zhi-Gang [2 ]
Zhang, Ling-Yu [1 ]
Yang, Lu [1 ]
Sun, Xin-Di [1 ]
Deng, Yuan [3 ]
Wang, Yao [1 ,3 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 100191, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[3] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310052, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer-based nanocomposites; Dielectric; Energy storage; Temperature stability;
D O I
10.1007/s12598-023-02312-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-power capacitors are highly demanded in advanced electronics and power systems, where rising concerns on the operating temperatures have evoked the attention on developing highly reliable high-temperature dielectric polymers. Herein, polyetherimide (PEI) filled with highly insulating Al2O3 (AO) nanoparticles dielectric composite films have been fabricated aiming for high thermal stability and reliability operated under high cycling electric field and elevated temperature. At room temperature, incorporating a small fraction of 0.5 vol% AO nanoparticles gives rise to a highest discharged energy density (U-e) of 5.57 J.cm(-3) and efficiency (eta) of 90.9% at 650 MV.m(-1), and a robust cycling stability up to 10(7) cycles at 400 MV.m(-1). Due to the substantially reduced dielectric loss, 2.0 vol% AO/PEI nanocomposite film exhibits excellent high-temperature capacitive performances, delivering U-e similar to 7.33 J.cm(-3) with eta similar to 88.8% under 700 MV.m(-1), and cycling stability up to 10(6) cycles under 400 MV.m(-1) at 100 degrees C, and U-e similar to 5.57 J.cm(-3) with eta similar to 84.7% under 620 MV.m(-1) at 150 degrees C. Molecular dynamic simulations are performed to understand the microscopic mechanism via revealing the polymer relaxation process in the AO/PEI composite at elevated temperatures. Our results are therefore very encouraging for high-temperature high-power capacitor application.
引用
收藏
页码:3682 / 3691
页数:10
相关论文
共 50 条
  • [41] Ultraviolet-Irradiated All-Organic Nanocomposites with Polymer Dots for High-Temperature Capacitive Energy Storage
    Ding, Jiale
    Zhou, Yao
    Xu, Wenhan
    Yang, Fan
    Zhao, Danying
    Zhang, Yunhe
    Jiang, Zhenhua
    Wang, Qing
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [42] High-temperature electrical energy storage performances of dipolar glass polymer nanocomposites filled with trace ultrafine nanoparticles
    Ren, Weibin
    Pan, Jiayu
    Dan, Zhenkang
    Zhang, Tao
    Jiang, Jianyong
    Fan, Mingzhi
    Hu, Penghao
    Li, Ming
    Lin, Yuanhua
    Nan, Ce-Wen
    Shen, Yang
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [43] High-temperature dielectric polymer composite films of all-organic PVDF/ABS with excellent energy storage performance and stability
    Zhang, Ranran
    Li, Lili
    Long, Shaojun
    Wang, Ping
    Wen, Fei
    Yang, Junzhou
    Wang, Gaofeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (09) : 3480 - 3488
  • [44] Ultrahigh discharge efficiency and improved energy density in polymer-based nanocomposite for high-temperature capacitors application
    Chen, Hanxi
    Pan, Zhongbin
    Wang, Weilin
    Chen, Yuyun
    Xing, Shuang
    Cheng, Yu
    Ding, Xiangping
    Liu, Jinjun
    Zhai, Jiwei
    Yu, Jinhong
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2021, 142
  • [45] Polymer dielectrics for high-temperature energy storage: Constructing carrier traps
    Zha, Jun -Wei
    Xiao, Mengyu
    Wan, Baoquan
    Wang, Xinmo
    Dang, Zhi-Min
    Chen, George
    PROGRESS IN MATERIALS SCIENCE, 2023, 140
  • [46] High-Entropy-Nanofibers Enhanced Polymer Nanocomposites for High-Performance Energy Storage
    Dou, Lvye
    Yang, Bingbing
    Lan, Shun
    Liu, Yiqian
    Liu, Yiqun
    Nan, Ce-Wen
    Lin, Yuan-Hua
    ADVANCED ENERGY MATERIALS, 2023, 13 (11)
  • [47] All-Organic Polystyrene-Based Copolymer Dielectrics for Superior High-Temperature Charge Energy Storage with Robust Stability
    Zhong, Peiyao
    Yin, Ningning
    Mao, Jie
    SMALL, 2025,
  • [48] Superior high-temperature energy-storage performance of multilayer PEI-based nanocomposites via functional filler integration
    Li, Xiangying
    Yang, Haibo
    Ma, Yanlong
    Lin, Ying
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [49] Stabilization of Polymer Nanocomposites in High-Temperature and High-Salinity Brines
    Haruna, Maje Alhaji
    Wen, Dongsheng
    ACS OMEGA, 2019, 4 (07): : 11631 - 11641
  • [50] Effect of the Dispersion State on the Dielectric Properties in High Energy Density Polymer-Based Nanocomposites
    Uguen, Nicolas
    Trouillet-Fonti, Lise
    Al Orabi, Rabih
    Sotta, Paul
    PROCEEDINGS OF THE 2020 3RD IEEE INTERNATIONAL CONFERENCE ON DIELECTRICS (ICD 2020), 2020, : 261 - 264