Effect of External Compression on the Thermal Runaway of Lithium-Ion Battery Cells during Crush Tests: Insights for Improved Safety Assessment

被引:4
|
作者
Hahn, Alexander [1 ,2 ]
Doose, Stefan [1 ,2 ]
Saathoff, Daniel [1 ,2 ]
Kwade, Arno [1 ,2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 5, D-38104 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Battery LabFactory Braunschweig, Langer Kamp 19, D-38106 Braunschweig, Germany
来源
BATTERIES-BASEL | 2023年 / 9卷 / 08期
关键词
lithium-ion battery; crush test; mechanical abuse; thermal runaway; safety; hazard potential; clamping device; short circuit; SHORT-CIRCUIT; ISSUES; ELECTROLYTES; STRATEGIES; DESIGN;
D O I
10.3390/batteries9080404
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To gain better understanding of the safety behavior of lithium-ion batteries under mechanical stress, crush tests are performed and reported in literature and in standards. However, many of these tests are conducted without the use of a cell clamping device, whereas external pressure is applied to the cell in a battery module in applications such as in an electric vehicle. The objective of this manuscript is to determine the effect of differing external compression on the thermal runaway of battery cells. Therefore, in this study, crush tests are performed with a hemispherical punch in a battery cell test chamber on commercially available 5 Ah pouch cells in a clamping device at four different normal stresses. The results are compared to cells that are free to expand with gas evolution. It is shown that applying compression to the cells not only results in a greater reproducibility of the experiments but that it also affects the thermal runaway process itself. With decreasing clamping stresses, the reaction time of the thermal runaway is increased by up to 19%, and the mass ejection is decreased by up to 10%, which, in turn, strongly influences the measurable gas concentrations by up to 80%. Based on this, a defined clamping compression was selected to obtain comparable results for different cell formats.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery
    Shi, Yang
    Noelle, Daniel J.
    Wang, Meng
    Le, Anh V.
    Yoon, Hyojung
    Zhang, Minghao
    Meng, Ying Shirley
    Qiao, Yu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (45) : 30956 - 30963
  • [42] Quantitative Analysis of Lithium-Ion Battery Eruption Behavior in Thermal Runaway
    Xing, Yu
    Wei, Ningning
    Li, Minghai
    BATTERIES-BASEL, 2024, 10 (06):
  • [43] Quantitative method of influence of thermal runaway gas combustion on thermal runaway propagation of lithium-ion battery
    Zhang Q.
    Liu T.
    Zhao Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (01): : 17 - 22
  • [44] Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries
    Gao, Zhenhai
    Rao, Shun
    Zhang, Tianyao
    Gao, Fei
    Xiao, Yang
    Shali, Longfei
    Wang, Xiaoxu
    Zheng, Yadan
    Chen, Yiyuan
    Zong, Yuan
    Li, Weifeng
    Chen, Yupeng
    ADVANCED SCIENCE, 2022, 9 (05)
  • [45] Simulation of Onset and Propagation of Heat within Lithium-ion Battery Pack During Thermal Runaway
    Bhat, Chalukya
    Channegowda, Janamejaya
    George, Victor
    Chaudhari, Shilpa
    Naraharisetti, Kali
    2021 IEEE PES/IAS POWERAFRICA CONFERENCE, 2021, : 549 - 551
  • [46] Numerical Study on the Use of Emergency Cooling During the Process of Lithium-Ion Battery Thermal Runaway
    Huang Yuqi
    Yang Kangbo
    Wu Yinghao
    Liu Binghe
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (03)
  • [47] Influence of Cathode Materials on the Characteristics of Lithium-Ion Battery Gas Generation During Thermal Runaway
    Zhang, Ying
    Wang, Hong
    Yu, Hang
    Jia, Teng
    Ma, Chuyuan
    FIRE TECHNOLOGY, 2024,
  • [48] Investigation of the internal physical and chemical changes of a cylindrical lithium-ion battery during thermal runaway
    He, Tengfei
    Gadkari, Siddharth
    Zhang, Teng
    Wang, Zhirong
    Liu, Jialong
    Mao, Ning
    Bai, Jinglong
    Cai, Qiong
    JOURNAL OF CLEANER PRODUCTION, 2024, 434
  • [49] Analyzing Thermal Runaway Propagation in Lithium-Ion Battery Modules with Reduced Flammability Electrolyte Cells
    Sorensen, Alexander
    Belt, Jeffrey
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2024, 171 (08)
  • [50] Numerical study of critical conditions for thermal runaway of lithium-ion battery pack during storage
    Zhao, Luyao
    Li, Wei
    Luo, Weiyi
    Zheng, Minxue
    Chen, Mingyi
    JOURNAL OF ENERGY STORAGE, 2024, 84