Effect of External Compression on the Thermal Runaway of Lithium-Ion Battery Cells during Crush Tests: Insights for Improved Safety Assessment

被引:4
|
作者
Hahn, Alexander [1 ,2 ]
Doose, Stefan [1 ,2 ]
Saathoff, Daniel [1 ,2 ]
Kwade, Arno [1 ,2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Volkmaroder Str 5, D-38104 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Battery LabFactory Braunschweig, Langer Kamp 19, D-38106 Braunschweig, Germany
来源
BATTERIES-BASEL | 2023年 / 9卷 / 08期
关键词
lithium-ion battery; crush test; mechanical abuse; thermal runaway; safety; hazard potential; clamping device; short circuit; SHORT-CIRCUIT; ISSUES; ELECTROLYTES; STRATEGIES; DESIGN;
D O I
10.3390/batteries9080404
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
To gain better understanding of the safety behavior of lithium-ion batteries under mechanical stress, crush tests are performed and reported in literature and in standards. However, many of these tests are conducted without the use of a cell clamping device, whereas external pressure is applied to the cell in a battery module in applications such as in an electric vehicle. The objective of this manuscript is to determine the effect of differing external compression on the thermal runaway of battery cells. Therefore, in this study, crush tests are performed with a hemispherical punch in a battery cell test chamber on commercially available 5 Ah pouch cells in a clamping device at four different normal stresses. The results are compared to cells that are free to expand with gas evolution. It is shown that applying compression to the cells not only results in a greater reproducibility of the experiments but that it also affects the thermal runaway process itself. With decreasing clamping stresses, the reaction time of the thermal runaway is increased by up to 19%, and the mass ejection is decreased by up to 10%, which, in turn, strongly influences the measurable gas concentrations by up to 80%. Based on this, a defined clamping compression was selected to obtain comparable results for different cell formats.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Analysis of safety for Lithium-Ion battery with Risk assessment of thermal runaway according to SOC
    Choi, Changki
    Kim, Deokhan
    Lee, Pyeong-Yeon
    Na, Wooki
    Kim, Jonghoon
    2021 24TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2021), 2021, : 2299 - 2302
  • [2] Effects of the battery enclosure on the thermal behaviors of lithium-ion battery module during thermal runaway propagation by external-heating
    Li, Zijian
    Guo, Yinliang
    Zhang, Peihong
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [3] Safety assessment of thermal runaway behavior of lithium-ion cells with actual installed state
    Zhou, Yangjie
    Zhu, Xiaoqing
    Wang, Zhenpo
    Shan, Tongxin
    Zhang, Jinghan
    Sun, Zhiwei
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [4] Uncertainty assessment method for thermal runaway propagation of lithium-ion battery pack
    Zhang, Wencan
    Yuan, Jiangfeng
    Huang, Jianfeng
    Xie, Yi
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [5] Kinetic modelling of thermal decomposition in lithium-ion battery components during thermal runaway
    Sadeghi, Hosein
    Restuccia, Francesco
    JOURNAL OF POWER SOURCES, 2025, 629
  • [6] Mechanism of Thermal Runaway in Lithium-Ion Cells
    Galushkin, N. E.
    Yazvinskaya, N. N.
    Galushkin, D. N.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (07) : A1303 - A1308
  • [7] Advancements in the safety of Lithium-Ion Battery: The Trigger, consequence and mitigation method of thermal runaway
    Hu, Xingjun
    Gao, Feifan
    Xiao, Yang
    Wang, Deping
    Gao, Zhenhai
    Huang, Zhifan
    Ren, Sida
    Jiang, Nan
    Wu, Sitong
    CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [8] The effect of PCM on mitigating thermal runaway propagation in lithium-ion battery modules
    Luo, Weiyi
    Zhao, Luyao
    Chen, Mingyi
    APPLIED THERMAL ENGINEERING, 2024, 236
  • [9] Pressure Effect on the Thermal Runaway Behaviors of Lithium-Ion Battery in Confined Space
    Yawen Li
    Lihua Jiang
    Zonghou Huang
    Zhuangzhuang Jia
    Peng Qin
    Qingsong Wang
    Fire Technology, 2023, 59 : 1137 - 1155
  • [10] Avoiding thermal runaway during spent lithium-ion battery recycling: A comprehensive assessment and a new approach for battery discharge
    Wu, Lixiang
    Zhang, Fu-Shen
    He, Kai
    Zhang, Zhi-Yuan
    Zhang, Cong-Cong
    JOURNAL OF CLEANER PRODUCTION, 2022, 380