A new model for bearing fault diagnosis based on optimized variational mode decomposition correlation coefficient weight threshold denoising and entropy feature fusion

被引:9
|
作者
Yang, Jing [1 ]
Bai, Yanping [2 ]
Cheng, Yunyun [1 ]
Cheng, Rong [2 ]
Zhang, Wendong [3 ]
Zhang, Guojun [3 ]
机构
[1] North Univ China, Sch Informat & Commun Engn, Taiyuan 030051, Peoples R China
[2] North Univ China, Sch Math, Taiyuan 030051, Peoples R China
[3] North Univ China, State Key Lab Dynam Testing Technol, Taiyuan, Peoples R China
关键词
Fault diagnosis; Denoising; Entropy feature fusion; Single working condition; Multiple working conditions; Small sample;
D O I
10.1007/s11071-023-08728-9
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
For the bearing fault diagnosis in small sample cases, a new model for signal denoising and entropy feature fusion (EFF) based on the wild horse optimizer (WHO) optimized variational mode decomposition (VMD) and correlation coefficient weight threshold (CCWT) is proposed (WHO-VMD-CCWT-EFF). For signal denoising, we first take the power spectrum entropy as the fitness function, and the WHO is used to optimize VMD parameters. Secondly, IMFs with correlation coefficient values less than 0.2 are removed and the correlation coefficient values as weights are applied to the corresponding IMF components, and then reconstruct them. Then, the refined composite multiscale dispersion entropy (RCMDE), refined composite multiscale fluctuation dispersion entropy (RCMFDE), refined composite multivariate generalized multiscale fuzzy entropy (RCmvMFE), refined composite multivariate generalized multiscale sample entropy (RCmvMSE), and multiscale permutation entropy (MPE) of the signal are calculated and fused. Finally, the Fisher discriminant classifier is used as the model for fault diagnosis. The proposed model achieves an accuracy of over 99% in 12 single working conditions and 30 multiple working conditions experiments using the case western reserve university (CWRU) dataset and the Paderborn dataset. Compared with existing feature fusion methods, the WHO-VMD-CCWT-EFF model only integrates five selected features, and can achieve accurate diagnosis of bearing faults in small sample experiments with 42 different artificial and real damages. This indicates that the model has good generalization ability between different datasets and working conditions.
引用
收藏
页码:17337 / 17367
页数:31
相关论文
共 50 条
  • [31] Research on the Application of Variational Mode Decomposition Optimized by Snake Optimization Algorithm in Rolling Bearing Fault Diagnosis
    Ji, Houxin
    Huang, Ke
    Mo, Chaoquan
    SHOCK AND VIBRATION, 2024, 2024
  • [32] MEMS Hydrophone Signal Denoising and Baseline Drift Removal Algorithm Based on Parameter-Optimized Variational Mode Decomposition and Correlation Coefficient
    Yan, Huichao
    Xu, Ting
    Wang, Peng
    Zhang, Linmei
    Hu, Hongping
    Bai, Yanping
    SENSORS, 2019, 19 (21)
  • [33] Rotating machinery fault diagnosis based on parameter-optimized variational mode decomposition
    Du, Haoran
    Wang, Jixin
    Qian, Wenjun
    Zhang, Xunan
    Wang, Qi
    DIGITAL SIGNAL PROCESSING, 2024, 153
  • [34] Fault Diagnosis of the Gyratory Crusher Based on Fast Entropy Multilevel Variational Mode Decomposition
    Wu, Fengbiao
    Ma, Lifeng
    Zhang, Qianqian
    Zhao, Guanghui
    Liu, Pengtao
    SHOCK AND VIBRATION, 2021, 2021
  • [35] Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy
    Chen, Xuejun
    Yang, Yongming
    Cui, Zhixin
    Shen, Jun
    ENERGY, 2019, 174 : 1100 - 1109
  • [36] Feature Extraction of Ship-Radiated Noise Based on Enhanced Variational Mode Decomposition, Normalized Correlation Coefficient and Permutation Entropy
    Xie, Dongri
    Esmaiel, Hamada
    Sun, Haixin
    Qi, Jie
    Qasem, Zeyad A. H.
    ENTROPY, 2020, 22 (04)
  • [37] The Fault Diagnosis of Rolling Bearing Based on Variational Mode Decomposition and Iterative Random Forest
    Qin, Xiwen
    Guo, Jiajing
    Dong, Xiaogang
    Guo, Yu
    SHOCK AND VIBRATION, 2020, 2020
  • [38] Rolling Bearing Fault Diagnosis Based on Successive Variational Mode Decomposition and the EP Index
    Guo, Yuanjing
    Yang, Youdong
    Jiang, Shaofei
    Jin, Xiaohang
    Wei, Yanding
    SENSORS, 2022, 22 (10)
  • [39] Fault Feature Extraction of Rolling Bearings Based on Variational Mode Decomposition and Singular Value Entropy
    Zhang, Chen
    Zhao, Rongzhen
    Deng, Linfeng
    2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND INDUSTRIAL AUTOMATION (ICITIA 2017), 2017, : 296 - 300
  • [40] Adaptive variational mode extraction method for bearing fault diagnosis based on window fusion
    Liu, Chuliang
    Tan, Jianping
    Huang, Zhonghe
    MEASUREMENT, 2022, 202