L(2; 1; 1)-labeling of interval graphs

被引:1
|
作者
Amanathulla, Sk. [1 ]
Bera, Biswajit [2 ]
Pal, Madhumangal [3 ]
机构
[1] Raghunathpur Coll, Dept Math, Purulia 723121, West Bengal, India
[2] Kabi Jagadram Roy Govt Gen Degree Coll, Dept Math, Bankura 722143, West Bengal, India
[3] Vidyasagar Univ, Dept Appl Math Oceanol & Comp Programming, Midnapore 721102, West Bengal, India
来源
INTERNATIONAL JOURNAL OF MATHEMATICS FOR INDUSTRY | 2022年 / 14卷 / 01期
关键词
L211-labeling; interval graph; efficient algorithm; frequency assignment; CODE ASSIGNMENT; SQUARE;
D O I
10.1142/S2661335222500034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
L(r; s; t)-labeling problem (Lrst-LP) is an important topic in discrete mathematics due to its various applications, like in frequency assignment in mobile communication systems, signal processing, circuit design, etc. L211 -LP is a special case of Lrst-LP. An L211-labeling (L211L) of a graph G = (V ; E) is a mapping F : V-> {0; 1; 2; ...} such that IF(xi) -F(eta)I >= 2 if and only if d(xi; eta) = 1, IF(xi) -z(eta)I > 1 if d(xi; eta) = 2 or 3, where d(xi; eta) is the distance between the nodes xi and eta. In this work, we have determined the upper bound of L211L for interval graph (IG) and obtained a tighter upper bound which is 4.6, -2. Also, we proposed an efficient algorithm to label any IG by L211L and also computed the time complexity of the proposed algorithm.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] L(2,1)-Labeling of Kneser graphs and coloring squares of Kneser graphs
    Shao, Zhendong
    Averbakh, Igor
    Solis-Oba, Roberto
    DISCRETE APPLIED MATHEMATICS, 2017, 221 : 106 - 114
  • [32] L(2,1)-labeling of dually chordal graphs and strongly orderable graphs
    Panda, B. S.
    Goel, Preeti
    INFORMATION PROCESSING LETTERS, 2012, 112 (13) : 552 - 556
  • [33] L(2, 1) -Labeling for Subdivisions of Some Cycle Dominated Graphs
    Murugan, M.
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2014, 2 (02): : 7 - 19
  • [34] THE L(2,1)-F-LABELING PROBLEM OF GRAPHS
    Chang, Gerard J.
    Lu, Changhong
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03): : 1277 - 1285
  • [35] On the L(2,1)-labeling conjecture for brick product graphs
    Shao, Zehui
    Zhang, Xiaosong
    Jiang, Huiqin
    Wang, Bo
    He, Juanjuan
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 34 (03) : 706 - 724
  • [36] L(2,1)-labeling of perfect elimination bipartite graphs
    Panda, B. S.
    Goel, Preeti
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (16) : 1878 - 1888
  • [37] The L(2,1)-labeling on graphs and the frequency assignment problem
    Shao, Zhendong
    Yeh, Roger K.
    Zhang, David
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 37 - 41
  • [38] A note on (s, t)-relaxed L(2, 1)-labeling of graphs
    Taiyin Zhao
    Guangmin Hu
    Journal of Combinatorial Optimization, 2017, 34 : 378 - 382
  • [39] Fast Exact Algorithm for L(2,1)-Labeling of Graphs
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Liedloff, Mathieu
    Rossmanith, Peter
    Rzazewski, Pawel
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION, TAMC 2011, 2011, 6648 : 82 - 93
  • [40] Fast exact algorithm for L(2,1)-labeling of graphs
    Junosza-Szaniawski, Konstanty
    Kratochvil, Jan
    Liedloff, Mathieu
    Rossmanith, Peter
    Rzazewski, Pawel
    THEORETICAL COMPUTER SCIENCE, 2013, 505 : 42 - 54