Vulnerability to Parameter Spread in Josephson Traveling-Wave Parametric Amplifiers

被引:8
|
作者
Kissling, C. [1 ]
Gaydamachenko, V. [1 ]
Kaap, F. [1 ]
Khabipov, M. [1 ]
Dolata, R. [1 ]
Zorin, A. B. [1 ]
Grunhaupt, L. [1 ]
机构
[1] Phys Tech Bundesanstalt, D-38116 Braunschweig, Germany
关键词
Resonant frequency; Capacitance; Gain; Frequency conversion; Resonators; Dispersion; Josephson junctions; Circuit analysis; parametric amplifiers; superconducting electronics; SQUIDs; BAND;
D O I
10.1109/TASC.2023.3242927
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
analyze the effect of circuit parameter variation on the performance of Josephson traveling-wave parametric amplifiers (JTWPAs). Specifically, the JTWPA concept we investigate is using flux-biased nonhysteretic rf-SQUIDs in a transmission line configuration, which harnesses the three-wave mixing (3WM) regime. Dispersion engineering enables phase-matching to achieve power gain of similar to 20 dB, while suppressing the generation of unwanted mixing processes. Two dispersion engineering concepts using a 3WM-JTWPA circuit model, i.e., resonant phase-matching (RPM) and periodic capacitance modulation (PCM), are discussed, with results potentially also applicable to four-wave-mixing (4WM) JTWPAs. We propose suitable circuit parameter sets and evaluate amplifier performance with and without circuit parameter variance using transient circuit simulations. This approach inherently takes into account microwave reflections, unwanted mixing products, imperfect phase-matching, pump depletion, etc. In the case of RPM the resonance frequency spread is critical, while PCM is much less sensitive to parameter spread. We discuss degrees of freedom to make the JTWPA circuits more tolerant to parameter spread. Finally, our analysis shows that the flux-bias point where rf-SQUIDs exhibit Kerr-free nonlinearity is close to the sweet spot regarding critical current spread.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Traveling-Wave Parametric Amplifier Based on Three-Wave Mixing in a Josephson Metamaterial
    Zorin, A. B.
    Khabipov, M.
    Dietel, J.
    Dolata, R.
    2017 16TH INTERNATIONAL SUPERCONDUCTIVE ELECTRONICS CONFERENCE (ISEC), 2017,
  • [32] NEW CONCEPTS IN TRAVELING-WAVE AMPLIFIERS
    FRIEDGUT, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1986, 34 (04) : 446 - 451
  • [33] CONTRIBUTION TO THEORY OF TRAVELING-WAVE AMPLIFIERS
    VOLOSHCHENKO, YP
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1967, 12 (08): : 1403 - +
  • [34] REGENERATIVE TRAVELING-WAVE MASER AMPLIFIERS
    KARLOV, NV
    PROKHORO.AM
    RADIO ENGINEERING AND ELECTRONIC PHYSICS-USSR, 1966, 11 (02): : 221 - &
  • [35] Experimental Study of Elements of a Josephson Traveling-Wave Parametric Amplifier on SQUID Chains
    Yusupov, R. A.
    Filippenko, L. V.
    Fominskiy, M. Yu.
    Koshelets, V. P.
    PHYSICS OF THE SOLID STATE, 2023, 64 (8) : 467 - 473
  • [36] Development of Josephson Traveling-Wave Parametric Amplifier Based on Aluminum SIS Junctions
    Tarasov, M.
    Gunbina, A.
    Lemzyakov, S.
    Nagirnaya, D.
    Fominskii, M.
    Chekushkin, A.
    Koshelets, V
    Goldobin, E.
    Kalaboukhov, A.
    PHYSICS OF THE SOLID STATE, 2021, 63 (10) : 1564 - 1568
  • [37] Experimental Study of Elements of a Josephson Traveling-Wave Parametric Amplifier on SQUID Chains
    R. A. Yusupov
    L. V. Filippenko
    M. Yu. Fominskiy
    V. P. Koshelets
    Physics of the Solid State, 2022, 64 : 467 - 473
  • [38] Development of Josephson Traveling-Wave Parametric Amplifier Based on Aluminum SIS Junctions
    M. Tarasov
    A. Gunbina
    S. Lemzyakov
    D. Nagirnaya
    M. Fominskii
    A. Chekushkin
    V. Koshelets
    E. Goldobin
    A. Kalaboukhov
    Physics of the Solid State, 2021, 63 : 1564 - 1568
  • [39] Stability of traveling-wave amplifiers with reflections
    Antonsen, TM
    Safier, P
    Chernin, DP
    Levush, B
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (03) : 1089 - 1107
  • [40] A Black-Box Quantum Model for Superconducting Traveling-Wave Parametric Amplifiers
    Haider, Michael
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (04) : 2143 - 2157