A class of elliptic quasi-variational-hemivariational inequalities with applications

被引:6
|
作者
Migorski, Stanislaw [1 ,2 ]
Yao, Jen-Chih [3 ]
Zeng, Shengda [4 ,5 ]
机构
[1] Chengdu Univ Informat Technol, Coll Appl Math, Chengdu 610225, Sichuan, Peoples R China
[2] Jagiellonian Univ Krakow, Chair Optimizat & Control, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
[3] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
[4] Yulin Normal Univ, Guangxi Coll & Univ Key Lab Complex Syst Optimiza, Yulin 537000, Guangxi, Peoples R China
[5] Jagiellonian Univ Krakow, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
基金
欧盟地平线“2020”;
关键词
Variational-hemivariational inequality; Variational inequality; Clarke subgradient; Mosco convergence; Fixed point; CONVEX-SETS;
D O I
10.1016/j.cam.2022.114871
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a class of quasi-variational-hemivariational inequalities in reflexive Banach spaces. The inequalities contain a convex potential, a locally Lipschitz superpotential, and a solution-dependent set of constraints. Solution existence and compactness of the solution set to the inequality problem are established based on the Kakutani-Ky Fan-Glicksberg fixed point theorem. Two examples of the interior and boundary semipermeability models illustrate the applicability of our results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条