Semi-Federated Learning: Convergence Analysis and Optimization of a Hybrid Learning Framework

被引:9
|
作者
Zheng, Jingheng [1 ]
Ni, Wanli [1 ]
Tian, Hui [1 ]
Gunduz, Deniz [2 ]
Quek, Tony Q. S. [3 ,4 ]
Han, Zhu [5 ,6 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[3] Singapore Univ Technol & Design, Pillar Informat Syst Technologyand Design, Singapore 487372, Singapore
[4] Kyung Hee Univ, Dept Elect Engn, Yongin 17104, South Korea
[5] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
[6] Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea
关键词
Convergence; Computational modeling; Transceivers; Training; NOMA; Data models; Privacy; Semi-federated learning; communication efficiency; convergence analysis; transceiver design; RESOURCE-ALLOCATION; COMMUNICATION-EFFICIENT; MIMO-NOMA; COMPUTATION; MINIMIZATION; DESIGN;
D O I
10.1109/TWC.2023.3270908
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Under the organization of the base station (BS), wireless federated learning (FL) enables collaborative model training among multiple devices. However, the BS is merely responsible for aggregating local updates during the training process, which incurs a waste of the computational resources at the BS. To tackle this issue, we propose a semi-federated learning (SemiFL) paradigm to leverage the computing capabilities of both the BS and devices for a hybrid implementation of centralized learning (CL) and FL. Specifically, each device sends both local gradients and data samples to the BS for training a shared global model. To improve communication efficiency over the same time-frequency resources, we integrate over-the-air computation for aggregation and non-orthogonal multiple access for transmission by designing a novel transceiver structure. To gain deep insights, we conduct convergence analysis by deriving a closed-form optimality gap for SemiFL and extend the result to two extra cases. In the first case, the BS uses all accumulated data samples to calculate the CL gradient, while a decreasing learning rate is adopted in the second case. Our analytical results capture the destructive effect of wireless communication and show that both FL and CL are special cases of SemiFL. Then, we formulate a non-convex problem to reduce the optimality gap by jointly optimizing the transmit power and receive beamformers. Accordingly, we propose a two-stage algorithm to solve this intractable problem, in which we provide closed-form solutions to the beamformers. Extensive simulation results on two real-world datasets corroborate our theoretical analysis, and show that the proposed SemiFL outperforms conventional FL and achieves 3.2% accuracy gain on the MNIST dataset compared to state-of-the-art benchmarks.
引用
收藏
页码:9438 / 9456
页数:19
相关论文
共 50 条
  • [31] On the Convergence of Hybrid Federated Learning with Server-Clients Collaborative Training
    Yang, Kun
    Shen, Cong
    2022 56TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2022, : 252 - 257
  • [32] Stragglers Are Not Disasters: A Hybrid Federated Learning Framework with Delayed Gradients
    Li, Xingyu
    Qu, Zhe
    Tang, Bo
    Lu, Zhuo
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 727 - 732
  • [33] A hybrid framework for glaucoma detection through federated machine learning and deep learning models
    Aljohani, Abeer
    Aburasain, Rua Y.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [34] Asynchronous Semi-Supervised Federated Learning with Provable Convergence in Edge Computing
    Yang, Nan
    Yuan, Dong
    Zhang, Yuning
    Deng, Yongkun
    Bao, Wei
    IEEE NETWORK, 2022, 36 (05): : 136 - 143
  • [35] Fast-Convergence Federated Edge Learning via Bilevel Optimization
    Wang, Sai
    Gong, Yi
    2023 28TH ASIA PACIFIC CONFERENCE ON COMMUNICATIONS, APCC 2023, 2023, : 87 - 92
  • [36] An Enhancing Semi-Supervised Federated Learning Framework for Internet of Vehicles
    Su, Xiangqing
    Huo, Yan
    Wang, Xiaoxuan
    Jing, Tao
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [37] Blockchain-Assisted Semi-Centralized Federated Learning Framework
    Shi H.
    Ma R.
    Zhang W.
    Guan H.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2023, 60 (11): : 2567 - 2582
  • [38] A Fair Federated Learning Framework With Reinforcement Learning
    Sun, Yaqi
    Si, Shijing
    Wang, Jianzong
    Dong, Yuhan
    Zhu, Zhitao
    Xiao, Jing
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [39] Differentially Private Federated Learning on Non-iid Data: Convergence Analysis and Adaptive Optimization
    Chen, Lin
    Ding, Xiaofeng
    Bao, Zhifeng
    Zhou, Pan
    Jin, Hai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4567 - 4581
  • [40] A Framework for Sustainable Federated Learning
    Guler, Basak
    Yener, Aylin
    2021 19TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2021,