Broad-Wall Loaded Photonic Crystal Waveguide Slow Wave Structure for the Terahertz Traveling Wave Tube

被引:1
|
作者
Chen, Haifeng [1 ]
Lu, Zhigang [1 ,2 ]
Duan, Jingrui [1 ]
Wang, Zechuan [1 ]
Wang, Zhanliang [1 ]
Wang, Shaomeng [1 ]
Gong, Huarong [1 ]
Gong, Yubin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Natl Key Lab Sci & Technol Vacuum Elect, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Yangtze Delta Reg Inst Huzhou, Huzhou 313001, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Photonic crystals; Metals; Couplers; Electromagnetic waveguides; Electromagnetic scattering; Reflection; Gratings; Mode competition; photonic bandgap (PBG); photonic crystal; slow wave structure (SWS); traveling wave tube (TWT); BEAM; DESIGN;
D O I
10.1109/TPS.2023.3341880
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A broad-wall loaded photonic crystal waveguide (BWPCW) slow wave structure (SWS) for the terahertz traveling wave tube (TWT) has been presented in this article. The frequency-selective properties of photonic crystals are studied. The mode competition can be adequately suppressed by introducing photonic crystals into the SWSs. The parameters of the SWS and couplers are optimized to achieve a high-performance TWT at 220 GHz. The results of simulation of high-frequency characteristics show that the BWPCW-SWS has an interaction impedance of 1.02-3.62 Omega and an ohmic loss of 0.050-0.076 dB per period in the passband. The beam-wave interaction results indicate that the proposed BWPCW-TWT can produce a saturated output power of over 80 W ranging from 198 to 261 GHz when the operating voltage is 24.5 kV and the beam current is 150 mA. At 220 GHz, the maximum electron efficiency and saturated output power attain 4.35% and 160 W, respectively, with an input power of 0.55 W.
引用
收藏
页码:148 / 154
页数:7
相关论文
共 50 条
  • [41] Investigation of Double-groove Loaded Folded-Waveguide Slow-wave Structure for Millimeter Traveling-wave Tubes
    He, Jun
    Wei, Yanyu
    JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2014, 35 (03) : 288 - 299
  • [42] Nonlinear Beam-wave Interaction of Terahertz Two-beam Folded Waveguide Traveling Wave Tube
    Li, Ke
    Liu, Wenxin
    Wang, Yong
    Cao, Miaomiao
    2015 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2015,
  • [43] Physics and simulation of terahertz folded waveguide traveling wave tube regenerative feedback oscillators
    Gao Peng
    Booske, John H.
    Yang Zhong-Hai
    Li Bin
    Xu Li
    He Jun
    Gong Yu-Bin
    Tian Zhong
    ACTA PHYSICA SINICA, 2010, 59 (12) : 8484 - 8489
  • [44] Study of rectangular beam folded waveguide traveling-wave tube for terahertz radiation
    Lu, Fengying
    Zhang, Changqing
    Grieser, Manfred
    Wang, Yong
    Lu, Suye
    Zhao, Guohui
    PHYSICS OF PLASMAS, 2017, 24 (10)
  • [45] Simulation of Microfabricated Folded Waveguide Traveling-Wave Tube as Broadband Terahertz Amplifier
    Zheng, Ruilin
    San, Haisheng
    Chen, Xuyuan
    APMC: 2009 ASIA PACIFIC MICROWAVE CONFERENCE, VOLS 1-5, 2009, : 1469 - +
  • [46] An elliptical beam-tunnel sine waveguide slow wave structure for G-band elliptical beam traveling wave tube
    Zhu, Junwan
    Duan, Jingrui
    Lu, Zhigang
    Wang, Zhanliang
    Gong, Huarong
    Gong, Yubin
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2023, 37 (06) : 794 - 802
  • [47] Design of two beams gun and folded waveguide slow wave in 0.14THz traveling wave tube
    Lei Wenqiang
    Jiang Yi
    Hu Peng
    Song Rui
    Ma Guowu
    Chen Hongbin
    2017 EIGHTEENTH INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2017,
  • [48] ANALYSIS OF A DIELECTRICALLY LOADED TRAVELING WAVE TUBE
    ENGLEFIELD, CG
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1971, ED18 (10) : 892 - +
  • [49] Study of Traveling Wave Tube With Folded-Waveguide Circuit Shielded by Photonic Crystals
    Gong, Yubin
    Yin, Hairong
    Wei, Yanyu
    Yue, Lingna
    Deng, Mingjin
    Lu, Zhigang
    Xu, Xiong
    Wang, Wenxiang
    Liu, PuKun
    Liao, FuJiang
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (05) : 1137 - 1145