Structures, principles, and properties of metamaterial perfect absorbers

被引:6
|
作者
Zhao, Chenxu [1 ,2 ]
Wang, Huan [1 ,2 ]
Bu, Yanyan [4 ]
Zou, Hui [1 ,2 ]
Wang, Xiangfu [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Wuhan Univ Sci & Technol, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Sci, Nanjing 210023, Peoples R China
关键词
REFRACTIVE-INDEX SENSITIVITY; BAND TERAHERTZ ABSORBER; WIDE-BAND; ULTRATHIN METAMATERIAL; SIMPLE DESIGN; ABSORPTION; RESONATOR;
D O I
10.1039/d3cp03346e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metamaterials are a kind of artificial material with special properties, showing huge potential for applications in fields such as infrared measurement, solar cells, optical sensors, and optical stealth. A metamaterial perfect absorber (MPA) is designed based on a metamaterial, featuring strong absorption, small volume, light weight, ultra-bandwidth, tunability and other characteristics. This paper introduces the absorption mechanism of MPAs from microwave to optical wave band, and four directions of absorber design are elaborated. Equivalent impedance matching, plasma resonance and interference effect are the main absorption mechanisms of MPA. Multiband perfect absorption, ultra-wideband and ultra-narrowband perfect absorption, polarization and angle insensitive absorption, and dynamically controllable tunable absorption are the main design aspects. Among them, the proposal of a dynamically tunable absorber realizes the dynamic absorption. Finally, the problems and challenges of metamaterial perfect absorber design are discussed.
引用
收藏
页码:30145 / 30171
页数:27
相关论文
共 50 条
  • [21] Thermally induced nonlinear optical absorption in metamaterial perfect absorbers
    Guddala, Sriram
    Kumar, Raghwendra
    Ramakrishna, S. Anantha
    APPLIED PHYSICS LETTERS, 2015, 106 (11)
  • [22] A Circuit-Based Model for the Interpretation of Perfect Metamaterial Absorbers
    Costa, Filippo
    Genovesi, Simone
    Monorchio, Agostino
    Manara, Giuliano
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (03) : 1201 - 1209
  • [23] Nearly perfect metamaterial plasmonic absorbers for solar energy applications
    Nihal F. F. Areed
    Zienab EL-Wasif
    S. S. A. Obayya
    Optical and Quantum Electronics, 2018, 50
  • [24] Nearly perfect metamaterial plasmonic absorbers for solar energy applications
    Areed, Nihal F. F.
    El-Wasif, Zienab
    Obayya, S. S. A.
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)
  • [25] Enhanced quantum dots spontaneous emission with metamaterial perfect absorbers
    Wang, Wei
    Yang, Xiaodong
    Luk, Ting S.
    Gao, Jie
    APPLIED PHYSICS LETTERS, 2019, 114 (02)
  • [26] Nonlinear terahertz metamaterial perfect absorbers using GaAs [Invited]
    Zhao, Xiaoguang
    Zhang, Jingdi
    Fan, Kebin
    Duan, Guangwu
    Metcalfe, Grace D.
    Wraback, Michael
    Zhang, Xin
    Averitt, Richard D.
    PHOTONICS RESEARCH, 2016, 4 (03) : A16 - A21
  • [27] Active metamaterial nearly perfect light absorbers: a review [Invited]
    Hajian, Hodjat
    Ghobadi, Amir
    Butun, Bayram
    Ozbay, Ekmel
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2019, 36 (08) : F131 - F143
  • [28] Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures
    Zhang, Boyang
    Hendrickson, Joshua
    Guo, Junpeng
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (03) : 656 - 662
  • [29] Implementing infrared metamaterial perfect absorbers using dispersive dielectric spacers
    Zhao, Xiaoguang
    Chen, Chunxu
    Li, Aobo
    Duan, Guangwu
    Zhang, Xin
    OPTICS EXPRESS, 2019, 27 (02): : 1727 - 1739
  • [30] Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers
    Shchegolkov, D. Yu.
    Azad, A. K.
    O'Hara, J. F.
    Simakov, E. I.
    PHYSICAL REVIEW B, 2010, 82 (20):